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The bin packing problem (BPP) is one of the first studied
combinatorial optimization problems

Packing problems

Given a set of containers with a
limited capacity, find the
minimum number of containers
needed to pack a set of items in
such a way that some geometric

constraints are satisified.

Two challenges ROADEF (one on cutting,
one on packing), one challenge ESICUP
(packing)
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Cutting and packing are different
activities

But their combinatorial structure are the
same

Cutting/packing problems occur when
the capacity constraints are the main
constraints of the problem

Main differences: side constraints
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Figure: A packing problem



Cutting andpacking

Introduction 4/66

Cutting and packing are different
activities

But their combinatorial structure are the
same

Cutting/packing problems occur when
the capacity constraints are the main
constraints of the problem

Main differences: side constraints

1

2 3

4

5

6

7

8

9

1011

12

Figure: A packing problem

1

2 3

4

5

6

7

8

9

1011

12

Figure: A cutting problem



Somepacking problems

Introduction 5/66

������� ����	
��


�

�

���

 ��	��



Bingo card of this presentation

Introduction 6/66

an exponential model
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compact
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bunked

an unexpected 2D
circle packing prob-
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a donkey
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the new complexity
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hardness
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Kantorovich) de-
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circle packing prob-
lem

a donkey (*)

(*) a real one, not a new metaheuristic
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Themother of all C&Pproblems

One dimensional bin packing problem 9/66

The knapsack problem is weakly NP-hard (one of the 21 Karp’s
problems).

Used in all OR / combinatorial optimization courses.

Few breakthroughs in the last 20 years!

Best available method/software: the combo method of Martello et
al., 1999 (linear relaxation, dynamic programming,
branch-and-bound).

But MIP solvers are now catching up!

A trend of research: finding "hard" KP instances (= hard for
combo) [Smith-Miles et al., 2021]



Binpacking and cutting stock
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Bin packing Problem

Given a list of orders i = 1, . . . , n, each having a size ci ∈ R+, and
an integer value C (roll size), find the minimum number of cutting
rolls to pack all items in such a way that the sum of the item sizes
in one roll is always smaller than C .

The problems is NP-complete (NP-hard in the strong sense)
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Binpacking and cutting-stock
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Cutting-Stock Problem

Given a list of orders i = 1, . . . , n, each having a size ci ∈ R+ and

a demand di , and an integer value C (roll size), find the minimum
number of cutting rolls to satisfy the item demand in such a way
that the sum of the item sizes in one roll is always smaller than C .

The problem is NP-hard in the strong sense.

Only known to be NP-complete since [Eisenbrand and Shmonin,
2006]

The problem becomes a bin packing problem if it is "reasonable"
to specify the size of each item individually (even if they have the
same size).



Classical heuristics
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Classical heuristics are ordered-based algorithms

Initially, an empty bin is created. At each step, the next item is
selected and packed in a bin. A new bin may be created et each
step.

next fit: choose the current (last) bin

first fit : choose the first possible bin

best fit : choose the bin with the largest remaining
capacity

worst fit : choose the bin with the smallest remaining
capacity



The race to the ratio
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Algorithm Guarantee Complexity
Next-fit 2 O(n)
First-fit 1.7 O(n log n)
Refined first-fit 5/3 O(n log n)
Harmonic-k 1.69103 O(n log n)
Refined harmonic 373/228 = 1.63597 O(n)
Modified Harmonic 538/33 = 1.61562
Modified Harmonic 2 239091/148304 = 1.61217
Harmonic ++ 1.58889
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Classicalmodel forCSP

One dimensional bin packing problem 15/66

First model for the cutting-stock problem, due to Kantorovich.

"Compact" formulation

min
∑

j∈M

yj

∑

i∈N

cixij ≤ Cyj , j ∈ M

∑

j∈M

xij ≥ di , i ∈ N

xij ∈ N, i ∈ N ; j ∈ M

yj ∈ {0, 1}, j ∈ M

yj : 1 if bin j is open, 0 otherwise

xij : how many times item i is
cut from bin j

m : an upper bound on the
number of bins needed

N = 1, . . . , n and
M = 1, . . . ,m.
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Bad linear relaxation.
always equal to
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Is it really compact?

|M| is the number of bins in the
solution =⇒ Θ(

∑n
i=1

di )

Size of the instance:
O(

∑n
i=1

log di ).

Pseudo-polynomial model!

Many symmetries.



Apolynomial size version of (SC)
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Theorem (Eisenbrand and Shmonin, 2006)

The number of different cutting patterns in an optimal solution is
no larger than LD = 2

∑n
i=1

log di .

Remark

A pattern cannot be used more than dmax = max{di : i ∈ I}

binary variable yjk means that bin number j is replicated
2k times

integer variable xijk is the number of times i is used in
each bin j replicated 2k times

For the sake of simplicity, assume that all numbers are powers of 2.



Apolynomial size version of (SC)
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A smaller model

min
LD
∑

j=1

log dmax
∑

k=0

2kdjk

∑

i∈N

cixijk ≤ Cyjk , j = 1, . . . , LD; k = 0, . . . , log dmax

LD
∑

j=1

log dmax
∑

k=0

2kxijk = di , i ∈ N

xijk ∈ N, i ∈ N ; j = 1, . . . , LD; k = 0, . . . , log dmax

yjk ∈ {0, 1}, j = 1, . . . , LD; k = 0, . . . , log dmax



Removing symmetries from(SC)
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For the binary case, variables xij : i is packed in a bin whose item
of smallest index is j (xii when i is the smallest item in its bin).

Representative model

min
∑

i=M

xii

∑

i=j+1,n

cixij ≤ (C − ci )xjj , j = 1, . . . , n − 1

∑

j=1,...,i

xij = 1, i = 1, . . . , n

xij ∈ N, i = 1, . . . , n; j = 1, . . . , i



Removing symmetries from(SC)
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For the binary case, variables xij : i is packed in a bin whose item
of smallest index is j (xii when i is the smallest item in its bin).

Representative model

min
∑

i=M

xii

∑

i=j+1,n

cixij ≤ (C − ci )xjj , j = 1, . . . , n − 1

∑

j=1,...,i

xij = 1, i = 1, . . . , n

xij ∈ N, i = 1, . . . , n; j = 1, . . . , i

Not always better (sometimes m << n).



Gilmore-Gomorymodel forCSP
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P : set of all possible patterns (valid set of items for one bin).
a
p
i : number of times item i appears in p.

∀p ∈ P , λp indicates the number of times p is used in the solution.

Gilmore-Gomory model

min
∑

p∈P

λp

s.t.
∑

p∈P

a
p
i λp ≥ di ∀i ∈ N

λp ∈ N ∀p ∈ P
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Columngeneration
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Master problem

min
∑

p∈P

λp

s.t.
∑

p∈P

a
p
i λp ≥ di , i ∈ N (π)

λp ∈ R+, p ∈ P

Dual

max
∑

i∈N

diπi

s.t.
∑

i∈N

a
p
i πi ≤ 1, p ∈ P

πi ≥ 0, i ∈ N

Variable of minimum reduced cost:
min{1 − πiai :

∑

i∈N ciai ≤ C ; ai ∈ N
n}.
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Master problem

min
∑

p∈P

λp

s.t.
∑

p∈P

a
p
i λp ≥ di , i ∈ N (π)

λp ∈ R+, p ∈ P

Dual

max
∑

i∈N

diπi

s.t.
∑

i∈N

a
p
i πi ≤ 1, p ∈ P

πi ≥ 0, i ∈ N

Variable of minimum reduced cost:
min{1 − πiai :

∑

i∈N ciai ≤ C ; ai ∈ N
n}.

Where are the convexity constraints ?

Worst model to explain Dantzig-Wolfe
decomposition!



Pricing subproblem (unbounded)
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max
∑

i∈N

πiai

∑

i∈N

ciai ≤ C

ai ∈ N,i ∈ N

α(c) = maxi∈N :c≤ci{pi + α(ci + c)}

Better to use Combo in general, but
useful for my talk.
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Obtaining integer solutions

One dimensional bin packing problem 22/66

Classical branching in CG: using the original variables.

Cutting-stock, subproblems are aggregated, how can we get xij
values from the λp variables?

Solution: branching on the subproblem’s variables.

Branching decision : number of times item i is chosen before (or
after) some position in the bin.

Only changes the cost of the corresponding arcs
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Classical branching in CG: using the original variables.

Cutting-stock, subproblems are aggregated, how can we get xij
values from the λp variables?

Solution: branching on the subproblem’s variables.

Branching decision : number of times item i is chosen before (or
after) some position in the bin.

Only changes the cost of the corresponding arcs

024567891
0

44

333333

3



MIRUPproperty
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The linear relaxation of this model is always excellent.

MIRUP conjecture: ⌈LP⌉ ≥ OPT − 1 ?

This explains partially why so many papers were devoted to
techniques for accelerating the column generation procedure for
cutting stock



Lagrangian bound forCSP
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For any vector π ∈ Rn
+, the lagrangian lower bound is valid.

L(π) =
∑

i∈N

diπi +m ∗ {min y −
∑

i∈N

xiπi

∑

i∈N

cixi ≤ Cy

xi ∈ N, i ∈ N

y ∈ {0, 1} }

∑

i∈N diπ
∗
i → optimal value of the RMP

minimization problem with π∗ → optimal value of the subproblem

OPT(RMP) + m SP is a valid lower bound



Dual solutions
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Dual problem

max
∑

i∈N

diπi

∑

i∈N

aipπi ≤ 1, ∀p ∈ P

πi ≥ 0, ∀i ∈ N

C

1 1 2 13 41 1 2 3ft
Ca Cet Cstc C Te Te 1T 1

Farley’s bound

SP= minp∈P{1 −
∑

i∈N π̄iaip}
=⇒ ∀p ∈ P , 1 −

∑

i∈N π̄iaip ≥ SP
=⇒ ∀p ∈ P ,

∑

i∈N
π̄i

1−SP
aip ≤ 1

=⇒ π̄
1−SP

is dual-feasible ≡ OPT (RMP)/(1 − SP) is a valid
lower bound



Arc-flowmodel
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Another way of producing an extended formulation for CSP is to
reformulate the knapsack constraints are shortest path constraints.

Possible since knapsack feasibility can be computed recursively
through dynamic programming.



Arc-flowmodel [Carvalho, 1999]
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The model is based on a graph G = (V ,A).

V : positions in the bin {0, 1, . . . ,W }
A : set of arcs (packing an item at a given position)

(i , j) : packing at position i an item of size j − i

(i , i + 1) : packing nothing at position i (to allow solutions with
slack)

A(i) : set of arcs "covering" item i

Variables

z : flow value = number of paths = number of bins

λa : value of the flow through arc a



Arc-flow formulation: model
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min z

s.c.
∑

a∈A(i)

λa ≥ di , ∀i ∈ I

∑

a∈δ+(v)

λa −
∑

a∈δ−(v)

λa =











z , if v=0

0, if v=1,. . . ,W-1

−z if v=W

z ∈ N

λa ∈ N, ∀a ∈ A



Arc-flow formulation: example
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0 1 2 3 4 5 6 7 8 9 10

Data

Bin of size 10

2 items of size 7

3 items of size 5

7 items of size 3

Objective : minimize the value of
the flow

Constraints :

flow conservation

demand for each item



Arc-flow formulation: example

One dimensional bin packing problem 29/66

0 1 2 3 4 5 6 7 8 9 10

Data
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Arcs covering items of size 3
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Arc-flow formulation: example

One dimensional bin packing problem 29/66

0 1 2 3 4 5 6 7 8 9 10

2 1 1 1 1

2 1

2

0 0 0 1 1 1 1 2 3 4

Data

Bin of size 10

2 items of size 7

3 items of size 5

7 items of size 3

A solution for the problem



Arc-flow formulation: example
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0 1 2 3 4 5 6 7 8 9 10

1 1

Data

Bin of size 10

2 items of size 7

3 items of size 5

7 items of size 3

Configuration 5, 5



Arc-flow formulation: example

One dimensional bin packing problem 29/66

0 1 2 3 4 5 6 7 8 9 10

1

1

1 1

Data

Bin of size 10

2 items of size 7

3 items of size 5

7 items of size 3

Configuration 5, 3



FromSC toArc-Flow
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Constraints
∑

i∈N cixij ≤ Cyj are knapsack constraints.

Knapsack problem can be solved by dynamic programming

The dynamic program is equivalent to seeking a path of largest
profit in a graph

The shortest path problem can be expressed exactly by a linear
program with the total unimodularity property

By replacing the knapsack constraints by path constraints, one
obtains the arc-flow formulation.

Since the same set of constraints is convexified, it has the same
linear relaxation as the Gilmore-Gomory model.



Pros and cons ofAF
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AF has the same linear relaxation as GG

It can be entered directly in a general purpose MIP solver

It has more symmetries (ordered configurations instead of sets)

For large sizes of bin, the model does not even load!

Several works address methods for compacting the graph [Delorme
and Iori, 2017], [Brandao and Pedroso. 2013]
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Two-dimensional packing

Two-dimensional cutting-stock problems 34/66

Two-dimensional can be understood two ways

2D orthogonal

2D vector-packing

In this presentation: orthogonal packing.



Feasibility problem
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Main difference with 1D packing: the bin feasibility problem.

Straightforward in 1D, strongly NP-hard in 2D.

Non-guillotine Guillotine
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2DguillotineCSP
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→

1.Initial storage 2.Cutting table



DWdecomposition again!
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Let P be the set of all possible patterns (valid set of items for one
bin). Let us consider for each p ∈ P a variable λp indicating the
number of times p is used in the solution.
We denote by a

p
i the number of times item i appears in p.

min
∑

p∈P

λp

s.t.
∑

p∈P

a
p
i λp ≥ di , ∀i ∈ N

λp ∈ N, ∀p ∈ P

Now, set P is now defined as the set of possible item placement in
a rectangle.



Pricing: 2DKP
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The subproblem to solve is a two-dimensional unbounded knapsack
problem.
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Restricted case
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DP inspired by Beasley

U((w , h)1) = max{0, max
h′≤h,∃i∈I:hi=h′,wi≤w

{U((w , h′)
2

) + U((w , h − h′)1)}}

U((w , h)2) = max{0, max
w ′≤w :∃i∈I:wi=w ′

,hi≤h
{U((w ′, h)

3

) + U((w − w ′, h)2)}}

U((w , h)3) = max{0, max
h′≤h,∃i∈I:hi=h′,wi≤w

{U((w , h′)
4

) + U((w , h − h′)3)}}

U((w , h)
2

) = max
i∈I:hi=h,wi≤w

{pi + U((w − wi , h)
2)}

U((w , h)
3

) = max
i∈I:wi=w ,hi≤h

{pi + U((w , h − hi )
3)}

U((w , h)
4

) = max{0, max
i∈I:hi=h,wi≤w

{pi + U((w − wi , h)
4

)}}



Practical implementation
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(5, 7)1

(5, 4)1

(5, 3)1
(5, 1)1

(5, 4)2

(5, 3)2 (3, 4)2

(2, 3)2 (1, 4)2 ab

More complex dynamic program:
no more a path in a graph, but a
flow in an hypergraph.

No more T.U. matrix, but TDI
(see [Martin et al., 1991])



Flow in anhypergraph
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Bin : (5, 7) - 6 items to cut: 2 × a = (2, 4) and 4 × b = (3, 3)

(5, 7)1

1

(5, 3),1

(5, 7)1
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(5, 7)1

1

(5, 3),1(5, 3)1

(5, 4)2 (5, 4)2 (5, 3)1



Flow in anhypergraph
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Bin : (5, 7) - 6 items to cut: 2 × a = (2, 4) and 4 × b = (3, 3)

(5, 7)1

1

(5, 3),1(5, 3)1

(5, 4)2

(3, 4)2

a

a

(3, 4)2

(5, 3)1



Arc-flowmodel again! (1)
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2D arc flow: (almost) same as 1D

min z

s.c.
∑

a∈A(i)

λa ≥ di , ∀i ∈ I

∑

a∈δ+(v)

λa −
∑

a∈δ−(v)

λa =











z , if v=0

0, if v=1,. . . ,W-1

−z if v=W

z ∈ N

λa ∈ N, ∀a ∈ A



Arc-flowmodel again! (2)
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Bin : (5, 7) - 6 articles Ã couper : 2 × a = (2, 4) et 4 × b = (3, 3)

(5, 7)1

(5, 4)1

(5, 3)1
(5, 1)1

(5, 4)2

(5, 3)2 (3, 4)2

(2, 3)2 (1, 4)2 ab
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Two-dimensional cutting-stock problems 44/66

Bin : (5, 7) - 6 articles Ã couper : 2 × a = (2, 4) et 4 × b = (3, 3)

(5, 7)1

(5, 4)1

(5, 3)1
(5, 1)1

(5, 4)2

(5, 3)2 (3, 4)2
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2
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0
0
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2

2

2
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Building 2D solutions
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Several ways to model solutions.

Coordinates

Values (X ,Y )
Discretized values xip ∈ {0, 1}, yiq ∈ {0, 1}

Relative position

Oriented (left/right, top-down)
Non-oriented (interval graphs)
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Ascheduling relaxation
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Relaxation into a
cumulative scheduling
problem.

Only the
x-coordinates have
to be determined

The relaxation is
strong

Branch and bound

Constraints Programming

Integer programming, cutting plans
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rectangular items of size (w , h) in a rectangle of size (W ,H) if a
rotation of 90 degrees of small items is allowed?
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Definition (Pallet-loading problem)

Let W ,H,w , h, n be five integer values. Is it possible to pack n

rectangular items of size (w , h) in a rectangle of size (W ,H) if a
rotation of 90 degrees of small items is allowed?

Is the problem in P?

is the problem NP-hard?

is it even in NP?
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Multiple bin size

Rotation / no rotation

Squares / rectangles / circles

convex items

non-convex items =⇒ nesting

Source : Au Château Carbonnieux, F.

Clautiaux, collection personnelle
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Source : ISMP, F. Clautiaux, collection personnelle

Same structure as 2D, more diff

Often come with practical
constraints



Pallet loading
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In logistics, boxes are generally packed on pallets.

The problem decomposes into two subproblems.

build the pallets (3D)

pack the pallets in the truck (2D bin packing)

In certain cases, pallets are built using levels.



Practical constraints
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Three-dimensional packing problems come from logistic operations.

Many pratical constraints.

Maximum weight, weight
distribution

Priorities, visibility

Stacking constraints,
fragility

Stability (static vs.
dynamic)

Figure borrowed from Corinna Krebs, Jan Fabian

Ehmke, Axle Weights in combined Vehicle Routing

and Container Loading Problems, EJTL 10, 2021



Classical 3Dheuristics
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Classical 3D heuristics restrict the problem to some highly
structured solutions

Wall building

Layer building

Most heuristics are based on a static order of the items, and local
searches

May be linked to simulation / mechanics



Example of practical 3Dproblem
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Challenged proposed in
2014 by ESICUP, Renault,
Université de Bordeaux.

Real data from Renault

"Simplified" truck-loading
problem.

Above view

left view



Constraints
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1. One or two possible
orientations

2. Maximum total weight in the
bin

3. Stacks non overlap

4. Stacks lie entirely into the
bins

5. Each item is packed.

6. Maximum number of items
that can be packed in the last
bin.

7. Bin 0 is the one with the
smallest volume

8. The height of a stack is the
sum of the heights of its layer

9. Maximum total height.

10. Layers of almost equal
dimensions in a stack.

11. The envelope of a stack is the
envelop of the orthogonal
projection of the layers it
contains

12. Metal packages are packed
together in stacks.

13. Maximum density for each
stack.

14. The layers in a stack are
sorted by decreasing weight.

15. Layers are composed of
contiguous rows

16. Maximum number of rows in
a layer.

17. Same sizes of rows in a layer.

18. All items in a layer have the
same height.

19. Rows are justified in a layer

18. The dimension of a layer is
the envelope of its rows.

19. Rows are composed of
contiguous items

20. Maximum number of items in
a row.

21. Same horizontal size of items
in a row.

22. Items are justified in a row.

23. The dimension of a row is the
envelope of its items.

24. Consecutive layers are
contiguous in the vertical
dimension

25. The top of a stack is the top
of its highest layer

26. layers composed of metal
packages can only contain
one item

27. maximum weight on the base
layer items



Recent trends in cutting and packing 59/66

Introduction

One dimensional bin packing problem

Two-dimensional cutting-stock problems

Three-dimensional problems

Recent trends in cutting and packing

Conclusion



Classical 1Dvariants
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Conflicts

Multiple length (several sizes of bin, minimize the total
length used)

Bin packing with fragile objects

Cardinality constraints

Bin packing with fragmentation

Temporal bin packing

For all of them: branch-and-price, heuristics



Problems: integrated problems
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In the industry, stock rolls do not pop from nowhere, and items are
not shipped as soon as they are produced

Inventory (lot-sizing) and packing

Also packing + routing (not so recent), visibility constraints, order
constraints.



Problems: leftovers
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When glass, metal, wood are cut, the leftovers are either thrown
away, recycled, sold, or reused

The question of how the leftovers are handled is getting more and
more interest from the community.

Several approaches, generally with an implicit assumption on the
relative costs of storage and raw material.



Problems/method: uncertainty
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The bin packing problem is historically treated in a stochastic
version (i.e. on-line, semi on-line algorithms).

The works on robust bin packing are more recent

Not much work on stochastic / robust optimization with recourse
(too hard?)
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Conclusion
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The bin packing problem is still a benchmark problem for many
algorithms

Exists in many variants with many hard practical constraints

Like many classical problems, the new variants involve either
non-linear aspects, or uncertainty
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Thank you!
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