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Who is the speaker? 

 Andrea D’Ariano is Associate Professor

in Operations Research (OR)

 Background of knowledge in OR, Computer Science,

Railway Engineering, Intelligent Transportation Systems

Winner of Prizes by IEEE, INFORMS, IAROR, AIRO, IEOM, ...

 Associate Editor for well-known journals (Transp. Res. B, C, E)

 Participation in several research projects with Universities,

Research Institutes, Transportation Companies and Organizations

 Coordinator of AIRO (Italian Assoc. of Operat. Research) Chapter

on “Optimization in Public Transport and Shared Mobility”
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Railway Optimization: Our group

Railway Operations Research @ Roma Tre
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What represents an Alternative Graph (AG)? 
 AG is a way of formulating job shop scheduling problems (JSSP)
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What represents an Alternative Graph (AG)? 
 AG is a way of formulating job shop scheduling problems (JSSP)

 JSSP is a class of scheduling problems in which:

• Each job corresponds to a vehicle or person taking some actions

• Each job is composed by a set of operations to be performed

• The set of operations of each job can be pre-defined or flexible

• Each operation is related to a job and a capacitated resource

• Each resource is shared by different jobs in the schedule
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[Shi Qiang Liu,

Erhan Kozan,

Transp. Science

2011]
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What represents an Alternative Graph (AG)? 
 AG is a way of formulating job shop scheduling problems (JSSP)

 JSSP is a class of scheduling problems in which:

• Each job corresponds to a vehicle or person taking some actions

• Each job is composed by a set of operations to be performed

• The set of operations of each job can be pre-defined or flexible

• Each operation is related to a job and a capacitated resource

• Each resource is shared by different jobs in the schedule

❑ JSSP can easily represent a train scheduling problem in which:

• Each job corresponds to a specific train

• Each resource corresponds to a piece of railway track

• Each operation is a piece of track that is occupied by a train

• The set of operations of a job is the train routing
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What represents an Alternative Graph (AG)? 

 AG is particularly suitable to model train scheduling problems.

In AG, each node is an operation, while each arc is a constraint
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What represents an Alternative Graph (AG)? 

 AG is particularly suitable to model train scheduling problems.

In AG, each node is an operation, while each arc is a constraint

 Each piece of track can only be occupied by one train at a time,

thus requiring blocking (or no-store) constraints

 Each train has a travel time window according to the timetable,

i.e. minimum & maximum times to start processing an operation,

requiring release & due date (soft) or deadline (hard) constraints

 Other types of constraints: service connection constraints,

rolling stock constraints, arrival and departure time constraints,

resource availability constraints, min and max travel time

constraints, …
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What about the modeling assumptions?
 Each operation has a start time (i.e. a timing variable) and a

duration time (input data), requiring a pre-defined processing time
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What about the modeling assumptions?
 Each operation has a start time (i.e. a timing variable) and a

duration time (input data), requiring a pre-defined processing time

 Train sequencing can be partially or totally flexible (each

alternative arc is a variable) between trains sharing resources
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What about the modeling assumptions?
 Each operation has a start time (i.e. a timing variable) and a

duration time (input data), requiring a pre-defined processing time

 Train sequencing can be partially or totally flexible (each

alternative arc is a variable) between trains sharing resources

 The routing of each train can be either fixed or flexible (each job

can be a variable), with possibility of local or global re-routing
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What about the modeling assumptions?
 Each operation has a start time (i.e. a timing variable) and a

duration time (input data), requiring a pre-defined processing time

 Train sequencing can be partially or totally flexible (each

alternative arc is a variable) between trains sharing resources

 The routing of each train can be either fixed or flexible (each job

can be a variable), with possibility of local or global re-routing

 The train arrival and departure times can also be flexible

 Travel/dwell times are constrained between mix and max values

 Assumptions on time and resource granularities must be set
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What about the modeling assumptions?

 The problem complexity (finding a feasible schedule is NP-hard)

depends on the assumptions regarding the granularity, i.e. on the

number of sequencing and routing variables (the timing variables

are easy to handle, since modelled as shortest path problems).
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What about the modeling assumptions?

 The problem complexity (finding a feasible schedule is NP-hard)

depends on the assumptions regarding the granularity, i.e. on the

number of sequencing and routing variables (the timing variables

are easy to handle, since modelled as shortest path problems).

 The objective function is usually related to the timing of

operations. There are powerful scheduling-theory-based

techniques to minimize the maximum completion time or delay.

 Other objective functions are possible, but the resulting problems

might be more difficult to handle with AG, while more general

mathematical formulations can easily incorporate them (even if

general solvers might be slow to converge to near-optimum).
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Which models exist in the literature?

 A significant number of papers use AG for train scheduling:

 Two main streams of research are based on either resource-

dependent (e.g., MILP) or time-dependent formulations. Their

complexity depends on the adopted resource and time granularity.
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Survey on IEEE ITS Journal by Fang et al. 2015
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Which solving methods exist?
 General (commercial) solver:

• Pros: easy to formulate business rules and objectives

• Contros: very slow solving process when increasing problem size

 Smart (problem-dedicated) solver:

• Pros: very good performance and scalability

• Contros: some business rules and objectives require a lot of work

AG-based software uses heuristic, meta-heuristic, and exact

algorithms to handle different types of variables. These algorithms

need to be adapted when changing constraints/rules and objectives.

Pre-processing is a key factor for any solver, e.g. filtering the train

routes, pre-selecting variable values, reducing the variables.
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Which types of problem decomposition?
 Decomposition is needed in practice and can be of different types:

• Temporal decomposition, e.g., rolling horizon or MPC approaches;

• Spatial decomposition, e.g., coordination or Benders approaches;

• Decomposition based on the different types of variables, e.g.,

timing, sequencing, and routing approaches;

• Decomposition based on different decision layers, e.g., the variables

are grouped based on the definition of sub-problems.

20

All the decomposition methods

are iterative and require

to study convergence,

performance, and

scalability factors.
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Train Rescheduling Problem

Aim: Development of novel railway traffic management systems 

for a timely, precise and effective train traffic regulation

in terms of punctuality increase and energy efficiency

Tool: Flexible rail operations via advanced models and algorithms    

for optimizing train sequencing, routing and timing decisions

Application: Recover real-time railway traffic disturbances 

such as multiple delayed trains and blocked tracks
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Background: Blocking time theory
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Max consecutive delay

Selection S = Choose at most 

one arc from each pair in A, thus 

obtaining a graph G(S)=(N,FS)

Time 

t0

0

n

Problem= Find a complete selection

S such that the longest path

from 0 to n in G(S) is minimum

N = Set of nodes

F = Set of fixed arcs

A= Set of pairs of alternative arcs
G = (N,F,A)

Alternative Graph (AG) [Mascis

Pacciarelli

EJOR 2002]
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From AG to MILP
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Infeasible

Schedule

Train 

(Re)Scheduling

Train 

Rerouting

Rerouting

Alternatives?

Timetable

Infrastructure Data

Train Data

Passable Routes

Feasible

Schedule

Possible 

Improvements

No Rerouting or

Time Limit Reached Optimal Orders

Optimal Routes

New Routes

CDRFR*algorithms:

Heuristics (e.g. FCFS, AMCC, JGH, ...)

Branch and Bound (B&B)

CDR algorithms:

Local Search (LS)

Tabu Search (TS)

VNS, VNTS, ...

*Conflict Detection and Resolution with Fixed Routes

Optimization software: AGLIBRARY

Train routes

Traveltimes

XML input file:

Xml output:
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CDRFR formulation of a small example with three trains
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Illustrative example (1)
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Branching rule: Choose the most critical unselected 

alternative pair and branch on this pair.

Hybrid search strategy: Alternate X repetitions of the depth-first 

visit with the choice of the open node of the search tree with smallest 

lower bound among the last Y open nodes.

Lower bound method: Generalization of the “Jackson pre-emptive 

schedule” [Carlier & Pinson MS 1989]. Implementation + evaluation

of single and parallel machines [Brucker & Brinkkotter JS 2001].

Implications rules: Network topology (static/off-line rules) and 

alternative graph proprieties (dynamic/on-line rules)

28

[D’Ariano

EJOR 2007]

Branch and bound algorithm
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A conflict-free deadlock-free schedule is a complete consistent selection S

Optimal CDRFR solution computed by the B&B algorithm
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11

2

9 10 5 6

3 4

87

12 13 14

1

n

-122

9 13 14

7 8 9 5 6

11 8 9 5 6

12

10

10

1 32

0

TA

TB

TC

60

0

40

10 10 10 10 10 10 10 

20 20 20 20 20 20

10 10 10 10 10 10

-160

-131
out

out

out

local rerouting available...

Max cons. delay = 8

Illustrative example (2)
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Optimal solution to the compound CDR problem

A new route for TA and a new complete consistent selection S are shown
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Illustrative example (3)
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CDR: Move & neighbourhood

We start from the solution obtained for the CDR problem with 

fixed routes. A local search for better train routes is as follows:

 A move is to change one route and its evaluation is to solve the

associated CDRFR problem;

 At each iteration the best (local) move is taken from a set of 

neighbours of a current CDR solution;

 Neighbourhood: It is well known that a solution can be improved    

by changing the critical path related to the current selection S only; 

 Our local search is based on a ramified critical paths in order to 

select potentially improving routes. 

[D’Ariano

Transport.

Science 2008]
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The ramified critical paths are well focused on reducing the maximum

consecutive delay but are not always opt-connected. 

A novel tabu search (TS) algorithm escapes from local minima by

taking a non-improving move and then forbidding the inverse move 

for a given number of iterations.

Another technique to escape from local minima is based on restarts

(i.e., performing a few moves regardless they are good or bad).

The best rerouting 

belongs to TA!

9 13 14
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7
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TC

CDR: Tabu search algorithm
[Corman

TRpB 2010]
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Test on a Dutch train dispatching area

 Utrecht-Den Bosch railway network (50 km long, including 21 station platforms)

 40 running trains per hour (timetable 2007) 

 Rolling stock connections are located in Zaltbommel and Den Bosch stations

 Rerouting is performed in stations and corridors (356 local routes)
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0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

B&B + Routing Optimization*

B&B + Default Routing

ARI + Routing Optimization*

ARI + Default Routing

*Routing Optimization by the local search algorithm

Results on the compound CDR problem (1)

Average Default Routing Routing Optimization  

Results Delay Delay Time Delay Delay Time 

Max Avg Tot Max Avg Tot

ARI 489.4 66.9 0.6 417.0 60.5 8.1

B&B 279.8 50.4 2.1 245.3 44.8 33.9

*

Percentage of maximum consecutive delays for four ROMA(AGLIBRARY) config.

(in seconds)

[D’Ariano Transp. Science 2008]
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*Routing Optimization by the tabu search algorithm

Results on the compound CDR problem (2)

*

*

*

*

*

Perturbations 

are multiple 

train delays

*

*

*

*

*

Disruptions 

are tracks 

which are 

blocked

[Corman

TRpB 2010]
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ICONIS

DSS

AGLibrary

Conflict Detection 

and Resolution

(CDR) LOCAL

Timetable 

Manager

Infrastructure

Manager

Rolling Stock 

Manager

Current status

Alternative routes near 

the conflicts detected

Current status New schedule
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Alstom Strategy
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Railway network (nearby London)
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Computational results

Intel Core 2 Duo E6550 (2.33 GHz), 2 GB di RAM, Windows XP

Scheduling & routing problem (CDR problem) : 29 instances 

CPLEX (algorithm: 1 hour of computation): 

[MILP formulation solved by IBM LOG CPLEX MIP 12.0] 

❖ 6 fails, 22 optimum, avg comp time (algo) best sol 1011.7 sec  

AGLIBRARY* (algorithm: 20 sec of computation): 

[Branch & Bound (EJOR, 2007) + Tabu Search (TRpartB, 2010)]

❖ 0 fails, 21 optimum, avg comp time (algo) best sol 11.6 sec 

*Better computat. results are obtained with VNS (Samà COR 2017)
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CPLEX vs AGLIBRARY (scheduling & routing)

41
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CPLEX vs AGLIBRARY (scheduling & routing)

42
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