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Train Timetabling

Railway Optimization Stages

Figure from Lusby, R. M., Larsen, J., Bull, S. (2017).
A survey on robustness in railway planning. European Journal of Operational Research.
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Train Timetabling

Train Timetabling

It consists of finding an optimal schedule

of trains in a railway network satisfying:

safety regulations (e.g., minimum
headway times between
consecutive trains on the same
track) and
operational constraints (e.g.,
running times, dwell times,
station capacity)

The schedule is defined by the departure
and arrival times of trains at all visited
stations

The objective function depends on the
railway company (e.g., schedule as many
trains as possible)
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Train Timetabling

Railway infrastructure

The railway infrastructure consists of a network with:
nodes: represent the locations where the trains may interact
tracks: connect the nodes and are used by the trains to travel
from one node to the next one



Algorithms based on time-expanded formulations for Train Timetabling Problems

Train Timetabling

Trains to be scheduled

The trains to be scheduled are determined based on the
passenger demand and can be given in input in two different
ways:

1. A set of train lines (a route between an origin and a
destination station with a specific stopping pattern) and a
frequency of the train line

2. An ideal timetable for each train provided by the Train
Operator that specifies the departure and arrival times at each
visited station of the railway network
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Train Timetabling

Constraints

minimum headway time between consecutive trains using the
same track

forbid overtaking and crossing of trains on the same track

lower and upper limits on the dwelling time of a train at a
station

lower and upper limits on the running time of a train on a
track

acceleration and deceleration times when a train stops at a
station

maximum number of trains simultaneously present at a station

connection constraints for passengers transfers

. . .
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Train Timetabling

Periodic and non-periodic timetabling

Periodic (or cyclic): the schedule of the trains is repeated
every given time period (for example every hour)

Non-periodic (or non-cyclic): the schedule of the trains is the
same every day, it is appropriate for more congested network

In this talk, we focus on:

Starting from an ideal timetable for each train
Schedule as many trains as possible and minimize the changes
with respect to the ideal timetables
First the non-periodic problem (scheduling trains for a day)
and then a periodic problem (scheduling trains for one hour)
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Models based on time-expanded graphs

Non-periodic Train Timetabling - one-way line

S = {1, . . . , s}: set of stations

T : set of trains each with:

an assigned importance (e.g., high-speed, local, freight)
an ideal timetable

Time discretization (e..g, one minute)

The goal is to maximize the total importance of the scheduled
trains and minimize the changes to the ideal timetables
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Models based on time-expanded graphs

Changes to the ideal timetables

Changes can be applied to obtain a feasible timetable (without
train conflicts):

change the departure and/or arrival times of some trains at
some of the visited stations → shift

increase the dwell time of some trains at some of the visited
stations → stretch

cancel (= not schedule) a train

Lower and Upper limits are imposed for these changes:

maximum shift at the departure station for each train
maximum total stretch
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Models based on time-expanded graphs

Time-expanded graph

Time-Space Graph model by Caprara, Fischetti and Toth
(2002)

time-space graph G = (V ,A):

V : train departure W i and arrival
Uk times from/at stations
(i ∈ S \ {s}, k ∈ S \ {1})
A = A1∪, . . . ,∪A|T |: starting,
segment (travel), station (stop)
and ending arcs

xa: binary variable equal to 1 iff
arc a is selected (t ∈ T , a ∈ At)

A path in G from σ to τ corresponds to a timetable for a train
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Models based on time-expanded graphs

An example

Ideal Timetable A Ideal Timetable B Ideal Timetable C
Stations Arr. Time Dep. Time Arr. Time Dep. Time Arr. Time Dep. Time

1 9:00 9:00
2 9:05 9:07 9:10 9:12
3 9:18 9:30 9:35 9:33
4 10:00 10:03 10:02 10:07
5 10:20 10:24
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Models based on time-expanded graphs

ILP arc-model

max
∑
t∈T

∑
a∈At

paxa

pa: profit associated with each arc a ∈ A: importance of the train minus
penalties for the changes

∑
a∈δ+

t (σ)

xa ≤ 1, t ∈ T ,

∑
a∈δ−t (v)

xa =
∑

a∈δ+
t (v)

xa, t ∈ T , v ∈ V \ {σ, τ},

∑
a∈C

xa ≤ 1, C ∈ C,

xa ∈ {0, 1}, a ∈ A.

C: family of maximal subsets C of pairwise incompatible arcs
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Models based on time-expanded graphs

ILP path-model

max
∑
t∈T

∑
p∈Pt

πpxp

xp: binary variable equal to 1 iff path p is selected (t ∈ T , p ∈ P t)

πp: profit associated with each path p ∈ P: importance of the train
minus penalties for the changes along the path

∑
P∈Pt

xp ≤ 1, t ∈ T ,

∑
p∈I

xp ≤ 1, I ∈ IP,

xp ∈ {0, 1}, P ∈ P.

IP: family of maximal subsets I of pairwise incompatible paths with
incompatibility expressed separately for each station
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Solution Methods

Lagrangian-based Heuristic Algorithm

Proposed in Caprara, Fischetti and Toth (2002)
extended to a network in Cacchiani, Caprara, Toth (2010)

Applied to the ILP arc-model

Incompatibility constraints are relaxed in a Lagrangian way

Subgradient optimization to determine near-optimal Lagrangian
multipliers

Dynamic constraint-generation is used

During subgradient optimization, iteratively computes a heuristic
solution:

Trains are ranked based on the Lagrangian profit (original train
profit and Lagrangian penalties)
Trains are scheduled one by one, choosing the conflict-free
path with maximum Lagrangian profit → Dynamic
Programming
Local search procedures to improve the solution found
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Solution Methods

Branch-and-Cut-and-Price Algorithm

Proposed in Cacchiani, Caprara, Toth (2008)

Applied to the ILP path-model

Solve the LP-relaxation by column generation

Pricing problem: determine an optimal path in the time-expanded
graph → Dynamic Programming algorithms

Constraint separation is applied

Branching is applied on the choice of the arcs in the graph

Constructive heuristics: LP-based fixing of paths or arcs in the graph
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Skip-stop planning strategies1

An additional change to the ideal timetables: it is possible to
skip a stop (= not schedule a stop)

The case study is the high-speed double-track line
Beijing-Shanghai in China

The goal is to increase the capacity utilization of the corridor
Two sets of trains:

existing trains → actual feasible schedule
additional trains → ideal timetables

Acceleration and deceleration times must be taken into
account

maximum number of stops that can be cancelled per train

no shift for the existing trains

1F. Jiang, V. Cacchiani, P. Toth. Train Timetabling by Skip-Stop Planning
in Highly Congested Lines. Transportation Research Part B, 104, 149-174,
2017.
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Solution method

ILP arc-model with additional constraints

Lagrangian-based heuristic algorithm

Skip-stop strategies (with acceleration and deceleration) are
handled by the Dynamic Programming algorithm
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Dynamic Programming algorithm
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Computational experiments - case study

Beijing-Shanghai corridor: 29 stations

304 existing trains and 42 additional trains

  

the maximum number of stops that can be cancelled per train is set to 1

the maximum stretch is set according to the origin-destination of the train

the maximum shift is set to ±10, ±20 or ±30 minutes
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Computational experiments
adding new trains

#trains shift #sched travel stretch profit gap% time (s)
346 sh±10 109 328(0) 45829 1132(737) 986571 3.72 3857
346 sh±20 294 333(0) 45827 1142(740) 996286 2.98 6153
346 sh±30 415 336(1) 45681 1161(689) 998975 2.95 9732

Table: No stop skipping

#trains shift #sched travel stretch profit gap% #sk time (s)
346 sh±10 115 329(0) 45756 1096(662) 988525 3.66 2 4969
346 sh±20 279 334(0) 45731 1113(648) 997991 2.86 3 7510
346 sh±30 415 337(0) 45752 1192(664) 1003265 2.55 2 11112

Table: With stop skipping
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Generalization to include additional real-life features

Passenger-centric objectives2

Line Planning Problem → frequency of trains for each line in
the network

Regularity (synchronization) constraints between trains of the
same line → to provide a regular service to passengers

Passengers transfer between trains of different lines to reach
their destination

Therefore, trains of different lines have to be synchronized
effectively

2G.J. Polinder, V. Cacchiani, M.E. Schmidt, D. Huisman. An iterative
heuristic for passenger-centric train timetabling with integrated adaption times.
Computers & Operations Research, 142, 105740, 2022.
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Passenger-centric objectives

Synchronize trains and achieve regularity → minimize the
total perceived passenger travel time:

in-train time + transfer
time + transfer penalty + adaption time (waiting time at the
origin station)
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Generalization to include additional real-life features

Passenger-centric timetabling

We consider a time period H of one hour (periodic timetabling)

Given passengers origin-destination (OD) pairs, we precompute a set of
routes for each OD pair k
(direct travel options and routes with up to a maximum number of
transfer options)

dk : number of passengers of OD pair k

π: timetabling variables (time of departure and arrival events)

Minπ

∑
k∈OD

dk · Rk(π)

Such that π is a feasible timetable

passengers take best routes with respect to π

Rk(π) avg. perceived travel time of one passenger of OD-pair k ∀k ∈ OD
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Average perceived travel time

Rk(π) =
1

dk

∑
v∈V k

dk ·
Lk
v

H
· (γw ·W k

v + Y k
v ) =

1

H

∑
v∈V k

Lk
v · (γw ·W k

v + Y k
v )

W k
v : adaption time for a route departing in event v towards the

destination of OD-pair k

γw : weight of the adaption time

Y k
v : in-train time + transfer time on the best route from event v towards

the destination of OD-pair k (includes penalties for transfers)

V k : set of departure events of these routes for OD pair k (from the origin
of k)

Uniformly distributed passenger arrivals in the hour

Lk
v : time interval between event v and the previous departure event of a

route for OD-pair k

The total number of passengers of OD-pair k arriving in each interval Lk
v

is dk · L
k
v
H
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Generalization to include additional real-life features

Solution method

The problem can be modelled as a Periodic Event Scheduling
Problem (PESP) (Serafini Ukovich 1989) with additional
constraints to compute the Rk(π)

The PESP model can be solved by a MIP-based heuristic but
requires very long computing times for real-life instances

Another approach: PESP without infrastructure constraints +
algorithm based on a time-expanded formulation

Remove from the PESP model all constraints on timetable
feasibility → allow conflicts between trains
Compute passenger-ideal timetables
Make the timetables feasible (no conflicts between trains) by
modifying the ideal ones as little as possible → Lagrangian
Heuristic (LH)
Evaluate the impact on passenger perceived travel time →
feedback mechanism
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Generalization to include additional real-life features

Feedback mechanism

After the timetable has been made feasible, some OD-pairs
may have a bad perceived travel time

We identify the OD-pairs that got the largest worsening

We modify the profit structure by penalizing more the shift at
origin and intermediate stations where the service was not
regular

Apply again the Lagrangian Heuristic
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Generalization to include additional real-life features

Computational experiments - case study

Three case studies of the Dutch railway network (lines of 2019) and one hour
period:

A2: 34 stations, 20 trains, 891 OD-pairs.

Rotterdam-Groningen: 77 stations, 60 trains, 3810 OD-pairs.

Extended A2: 140 stations, 88 trains, 11121 OD-pairs.
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Generalization to include additional real-life features

A2 instance: ideal vs feasible timetable
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Generalization to include additional real-life features

Comparison

Instance Approach Evaluation value Time (hours)

A2

Ideal + LH 100.18 2 + 0.03

Ideal + LH + FB 100.10 2 + 0.11
Full PESP

- After 2.11 hours 105.80 2.11
- After 8 hours 104.88 8

Lower bound CPLEX 97.09

Rotterdam Groningen

Ideal + LH 100.59 4 + 0.06
Ideal + LH + FB 100.55 4 + 0.18
Full PESP

- After 4.18 hours 105.64 4.18
- After 16 hours 103.69 16

Lower bound CPLEX 92.72

Extended A2

Ideal + LH 101.51 4 + 0.14
Ideal + LH + FB 101.28 4 + 0.49
Full PESP

- After 4.49 hours - 4.49
- After 16 hours - 16

Lower bound CPLEX 93.00
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