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Setting up the scene

What can we expect from quantum optimization?

* The basic unit is the qubit and the concept of state

* The state Is a unitary vector as
lw) € C%,eq., |w)=a|0)+p|1),a,B € C,a”+ = land we can put it in

superposition

 Quantum algorithms are quantum circuits (and in particular unitary matrices): h//) = U| 1/10)

* The problem with quantum algorithms is to extract what we need (e.g., Grover search)

* Quantum optimization algorithms will design U to drive the state towards the desired
solution



Demystifying

What can we expect from quantum optimization?

 Can it solve NP Hard problems in polynomial time?

Not likely

NP

BQP Complete

 BQP: Bounded error quantum polynomial,
e Suspected relationship

 Since we don’t know NP vs. P, we don’t know the rest too...
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Demystifying

What can we expect from quantum optimization?

 Can it solve NP Hard problems “better” (faster, ...) than classical algorithms?

Not likely soon: it’s very hard to do!

Classically we are VERY good: /n the last 25 years, algorithmic advances in integer
optimization coupled with hardware improvements have resulted in a 800 billion factor

speedup in mixed-integer optimization (25 years ago a problem that would have
required 25 years to run, runs now in 1ms).

We can solve 1000+ variable problems within minutes

Contrast with chemistry (only limited atoms !)
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Demystifying

What can we expect from quantum optimization?

* Quantum algorithms for optimization will offer novel heuristics for the
solution of NP problems, that may (or not) give some advantage, with respect
to classical algorithms.

* |n terms of: speed/size

* |n terms of: search space



QUBOs

Quadratic, unconstrained, binary optimization problems

min x'Ox
x€{0,1}"

* £.g., max-cut, soft-constrained travelling salesman, portfolio
selection, etc..



QUBOs

Quadratic, unconstrained, binary optimization problems

min x'Ox
xe{0,1}"

 Quantum: encode the problem into a circuit. In the VQE case, an Hamiltonian
that encodes all the search space:

.{0,1}" 35 x — |w) € C*; H e C*™*%; min x’ Ox — min eig(H)

X

* (+) The encoding is straightforward

» (+) The basis vectors of |y) are the bitstrings of all the possible combinations
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QUBOs

Quadratic, unconstrained, binary optimization problems

e Quantum: encode the problem into a circuit. In the VQE case,
an Hamiltonian that encodes all the search space:

. {0,1Y'3x — |w) € C*; H e C*™*%; min x’ Ox — min eig(H)

X

* Then design a trial function that probes the Hilbert space:

» [w(0)) = UO)|yp) — min X' Ox ~ min (p(0) [ H[w(0)) = min (yp | UOHUO) [y



VQE

Variational Quantum Eigensolver

* Example: On quantum hardware

E[Vo(wo | UOHUO) | )]

On classical hardware

 Dimension D dictates approximation level and circuit depth

* This is a (classical) stochastic black-box, non-convex,
continuous optimization problem (and NP-Hard)



VQE

Variational Quantum Eigensolver

e Strengths:
* one-fits-all scheme (see Qiskit optimization module)

* Can be extended (heuristically and with some acrobatics) to
constrained problems, e.g. via operator splitting

* Can be extended to polynomial optimization (allowing high-order
interconnection: careful here)

* [t’'s Insane (= non simulatable) classically (= complete enumeration
of all feasible space)
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VQE

Variational Quantum Eigensolver

» Strengths:

* [t’'s Insane (= non simulatable) classically (= complete
enumeration of all feasible space)

* You are enumerating all the possibillities, put them In
superposition and trying them all at once”. Then you scan
the space by rotations...
| y) = ay|0000) + ;| 0001) + a,|0010) + a;|0011) + ... + a;5| 1111)
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VQE

Variational Quantum Eigensolver

* \Weaknesses:
* Any advantage? Not clear at this point

* |t scales terribly: e.g., iIn network problems if N is the number
of vertices, then we need n = O(Nz) qubits

* EX: for vehicle routing: Classically we are exact up to 250
vehicles, and approximate with guarantees till 1000+;
quantum-ly, VQE offers tops 10 vehicles with an heuristic
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The bigger picture: it’s all about encoding
Big strokes In the sky

* Encode the problem in a guantum circuit

* Define the ansatz (parametric circuit) to probe the solution
space

e [terate: quantum/ classical

. min f{x) — min V(P) ~ min V(P(6)
X P

* VQE is not the right encoding, can we build better ones?



Finding clues In a specific problem

Sub-graph isomorphism problem/ Graph isomorphism problem

* Focus on the graph isomorphism for simplicity

Q—0O
O
~
|
_o O O
O = O O
o OO =

. min ||[PAP" — B||%
Pell

* A, B are the adjacency matrices of the graphs of dimension N, P is a
permutation matrix

* The problem is finding permutations
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Finding clues In a specific problem
Step 1: Encoding

* Encoding: define a transformation, that maps the adjacency
matrices into unitary matrices as follows

o A —_— :H®(2k+1) (N2 @Z |’L ] Z ]‘) H®(2k—|—1)

| cexp(h(A))

et OO
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Finding clues In a specific problem
Step 1: Encoding

» Such hat transformation requires 2 log,(N) + 1 = 2k + 1
qubits, with N the number of vertices (rem, QUBO requires

O(N?))

* Proof: :
cexp(h(A)) € {—1,1}*V, H®" e UQR"), = n= 21og,(N) + 1

. And, A € U2+



Finding clues In a specific problem

Step 1: Encoding

jo: THH Ut (%) Hp-6- Ur (E) HBH UL (5) FpH Us (5) -6 Uy (—5) H-©-6H U (3) HP-pH Un (—=8) FPH Un (—=2) FpH Us (-=8) Hp-D
=t I | 1] | | |
10 : 1 H . . . .
11 : 4 H . .
b: 1H
U (-32) H
<Uy (—3F) P8 Ur (- 55) 11 U1 (B) FH{ Uy (- 55) FH{ U1 (B) [ U1 (2) | H
T . T Tth(%) H—1P-PHUs (-3F) P H
® T T U, (—‘8") EHUL (3) HP H
*~—o P T T U (5) HH
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Finding clues In a specific problem
Step 1: Encoding

* The hat transformation has a number of useful algebraic
properties, from which, After some heavy algebra

Theorem

Let: P = I, @ (H®*P®*H®*) € U(2*+T)

Y A

Then: PAPT — B = PAPTB



Finding clues In a specific problem

Step 1: Encoding

* The cost then, can be evaluated via a quantum circuit

0)*" +H H®* P
0)®* - H®k [ cexp(h(A4)) P
0) — H

. min |[PAPT — B||2 = min{y|PAPTB|y)

Pell Pell

cexp(h(B))

A

e

v AV

A




Finding clues In a specific problem
Step 2: Ansatz design

* Then, one design an ansatz (a parametric circuit, changeable
by rotations) to search in the space of permutation matrices
as such

vV AV

. min ||PAP" — BH% = min(z//\PAPTE | yw) ~ min (w\ﬁgﬁﬁgé | w)
Pell Pell OcR”

* Then it’s just SGD plus a quantum circuit evaluation !



Finding clues In a specific problem
Step 2: Ansatz design

_ Our choice of design is 159 = HRPi(H)
i=1
o RID (0) are rotatlons about the permutation Pi, and for which

HRP(WUZ') HPm m, € 7

. We span the permutatlon space with a permutation basis, and
allowing for unfeasibility
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Finding clues In a specific problem
Step 3: Quantum Algorithm

2k+1 ~
1. Initialize § € R?, |y) € C* choose an ansatz P,

2. Quantum-part : Evaluate the cost/ gradient
(w| PyAP)B |y), E[Vo(w|P,AP]B | )]

3. Classical-part : SGD: 07 = 0 — yE[ V(v PQAPgl@ | y) ]

4. Probabilistic rounding (in parallel, to map solution to actual
permutations)



Finding clues In a specific problem

Sub-graph isomorphism problem/ Graph isomorphism problem
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Finding clues In a specific problem

Sub-graph isomorphism problem/ Graph isomorphism problem

* (+) logarithmic scaling in the number of nodes: 100 qubit can

encode a O(10") node graph, vs. the best 1M graph
classically

* (-) the circuit depth is still proportional to the number of nodes
and edges.. (link to the importance of good compilation!)

* (-) it is still an heuristic (dimension D)



Extensions?

It’s all about algebra and well-played creativity

* |t works similarly for max-cut problems

e (Generalizations are still unknown

* Different encodings give rise to different building blocks for optimization

e Hat transformation seems to indicate to build quantum optimization from
matrices and permutations...

* |t’s exciting: building optimization from the ground up
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