
Domination-like problems

parameterized by tree-width

Mathieu Chapelle

LIGM, Université Paris-Est Marne-la-Vallée

JFRO 2012
LIP6, Université Paris 6

1/25

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• All the studied cases of Generalized domination are

FPT when parameterized by tree-width;

1. We extend known results of �FPTness� to more cases;

2. We prove that there exists (many) cases for which

Generalized domination become W[1]-hard when

parameterized by tree-width.

1/25

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• All the studied cases of Generalized domination are

FPT when parameterized by tree-width;

1. We extend known results of �FPTness� to more cases;

2. We prove that there exists (many) cases for which

Generalized domination become W[1]-hard when

parameterized by tree-width.

1/25

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• All the studied cases of Generalized domination are

FPT when parameterized by tree-width;

1. We extend known results of �FPTness� to more cases;

2. We prove that there exists (many) cases for which

Generalized domination become W[1]-hard when

parameterized by tree-width.

1/25

In brief

• Very few problems are known to be W-hard (i.e. not FPT)

when parameterized by tree-width;

• All the studied cases of Generalized domination are

FPT when parameterized by tree-width;

1. We extend known results of �FPTness� to more cases;

2. We prove that there exists (many) cases for which

Generalized domination become W[1]-hard when

parameterized by tree-width.

2/25

Parameterized complexity

FPT ⊂W[1] ⊂W[2] ⊂ . . . ⊂ XP

2/25

Parameterized complexity

FPT ⊂W[1] ⊂W[2] ⊂ . . . ⊂ XP

De�nition
A problem P is in FPT parameterized by k if it can be solved in

time O
(
f (k) · poly(n)

)
.

Example

k-Vertex cover can be solved in time O
(
1.2738k · k · n

)
.

[Chen, Kanj, Xia, 2010]

2/25

Parameterized complexity

FPT ⊂W[1] ⊂W[2] ⊂ . . . ⊂ XP

De�nition
A problem P is in XP parameterized by k if it can be solved in

time O
(
poly(n)f (k)

)
.

Example

k-Coloration is not in XP.

2/25

Parameterized complexity

FPT ⊂W[1] ⊂W[2] ⊂ . . . ⊂ XP

De�nition
A problem P is W[t]-hard parameterized by k if there exists an

fpt-reduction from any known W[1]-hard problem Q to P, that is:

Q �fpt P

Examples

k-Independent set is W[1]-hard.
k-Dominating set is W[2]-hard.

Some de�nitions

FPT cases

W[1]-hardness

Conclusion

4/25

Generalized domination

De�nition
D ⊆ V is a dominating set if, for all v ∈ V :

• v ∈ D; or

• ∃u ∈ V : u ∈ D ∩ N(v).

σ and % �x some constraints on the neighborhood of each vertex:

• σ �xes constraints on the neighborhood of vertices in D;

• % �xes constraints on the neighborhood of vertices not in D.

Remark
A graph G does not always admit a [σ, %]-dominating set.

4/25

Generalized domination

De�nition
D ⊆ V is a dominating set if, for all v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ≥ 0;

• v /∈ D ⇒ |D ∩ N(v)| ≥ 1.

σ and % �x some constraints on the neighborhood of each vertex:

• σ �xes constraints on the neighborhood of vertices in D;

• % �xes constraints on the neighborhood of vertices not in D.

Remark
A graph G does not always admit a [σ, %]-dominating set.

4/25

Generalized domination

De�nition
D ⊆ V is a dominating set if, for all v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ N;
• v /∈ D ⇒ |D ∩ N(v)| ∈ N∗.

σ and % �x some constraints on the neighborhood of each vertex:

• σ �xes constraints on the neighborhood of vertices in D;

• % �xes constraints on the neighborhood of vertices not in D.

Remark
A graph G does not always admit a [σ, %]-dominating set.

4/25

Generalized domination

De�nition
D ⊆ V is a [σ, %]-dominating set if, for all v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ; σ ⊆ N
• v /∈ D ⇒ |D ∩ N(v)| ∈ %. % ⊆ N

σ and % �x some constraints on the neighborhood of each vertex:

• σ �xes constraints on the neighborhood of vertices in D;

• % �xes constraints on the neighborhood of vertices not in D.

Remark
A graph G does not always admit a [σ, %]-dominating set.

4/25

Generalized domination

De�nition
D ⊆ V is a [σ, %]-dominating set if, for all v ∈ V :

• v ∈ D ⇒ |D ∩ N(v)| ∈ σ; σ ⊆ N
• v /∈ D ⇒ |D ∩ N(v)| ∈ %. % ⊆ N

σ and % �x some constraints on the neighborhood of each vertex:

• σ �xes constraints on the neighborhood of vertices in D;

• % �xes constraints on the neighborhood of vertices not in D.

Remark
A graph G does not always admit a [σ, %]-dominating set.

5/25

Known domination-like problems

Problem σ %

Dominating set N N∗

Independent set {0} N

Perfect code {0} {1}
Independent dominating set {0} N∗

Total dominating set N∗ N∗

Induced matching {1} N

. . .

6/25

Tree-width

De�nition
A tree decomposition

(
T , {Xi ⊆ V }

)
of a graph G = (V ,E) is

such that:

• ∀v ∈ V , ∃i : v ∈ Xi ;

• ∀uv ∈ E , ∃i : u, v ∈ Xi ;

• ∀v ∈ V , the bags containing v induce a subtree of T .

Width of a decomposition = max |Xi | − 1.

Tree-width of G , tw(G) = smallest width over all decompositions

of G .

1

2

5

34 8

6

7

1 2 31 5 6

1 2 35 6 81 2 35 6 71 2 31 3 5

1 2 31 2 3 1 2 33 4

6/25

Tree-width

De�nition
A tree decomposition

(
T , {Xi ⊆ V }

)
of a graph G = (V ,E) is

such that:

• ∀v ∈ V , ∃i : v ∈ Xi ;

• ∀uv ∈ E , ∃i : u, v ∈ Xi ;

• ∀v ∈ V , the bags containing v induce a subtree of T .

Width of a decomposition = max |Xi | − 1.

Tree-width of G , tw(G) = smallest width over all decompositions

of G .

1

2

5

34 8

6

7

1 2 31 5 6

1 2 35 6 81 2 35 6 71 2 31 3 5

1 2 31 2 3 1 2 33 4

6/25

Tree-width

De�nition
A tree decomposition

(
T , {Xi ⊆ V }

)
of a graph G = (V ,E) is

such that:

• ∀v ∈ V , ∃i : v ∈ Xi ;

• ∀uv ∈ E , ∃i : u, v ∈ Xi ;

• ∀v ∈ V , the bags containing v induce a subtree of T .

Width of a decomposition = max |Xi | − 1.

Tree-width of G , tw(G) = smallest width over all decompositions

of G .

1

2

5

34 8

6

7

1 2 31 5 6

1 2 35 6 81 2 35 6 71 2 31 3 5

1 2 31 2 3 1 2 33 4

6/25

Tree-width

De�nition
A tree decomposition

(
T , {Xi ⊆ V }

)
of a graph G = (V ,E) is

such that:

• ∀v ∈ V , ∃i : v ∈ Xi ;

• ∀uv ∈ E , ∃i : u, v ∈ Xi ;

• ∀v ∈ V , the bags containing v induce a subtree of T .

Width of a decomposition = max |Xi | − 1.

Tree-width of G , tw(G) = smallest width over all decompositions

of G .

1

2

5

34 8

6

7

1 2 31 5 6

1 2 35 6 81 2 35 6 71 2 31 3 5

1 2 31 2 3 1 2 33 4

6/25

Tree-width

De�nition
A tree decomposition

(
T , {Xi ⊆ V }

)
of a graph G = (V ,E) is

such that:

• ∀v ∈ V , ∃i : v ∈ Xi ;

• ∀uv ∈ E , ∃i : u, v ∈ Xi ;

• ∀v ∈ V , the bags containing v induce a subtree of T .

Width of a decomposition = max |Xi | − 1.

Tree-width of G , tw(G) = smallest width over all decompositions

of G .

1

2

5

34 8

6

7

1 2 31 5 6

1 2 35 6 81 2 35 6 71 2 31 3 5

1 2 31 2 3 1 2 33 4

Some de�nitions

FPT cases

W[1]-hardness

Conclusion

8/25

Known results

Theorem (van Rooij, Bodlaender, Rossmanith, 2009)

[σ, %]-Dominating set can be solved in time O∗
(
stw

)
, if σ and

% are both �nite or co�nite, where s is the minimum number of

states needed to represent σ and %.

Corollary

Independent set can be solved in time O∗(2tw).
[Niedermeier, 2006]

Dominating set can be solved in time O∗(3tw).
[van Rooij, Bodlaender, Rossmanith, 2009]

Under SETH hypothesis, this time complexity is optimal.

[Lokshtanov, Marx, Saurabh, 2010]

8/25

Known results

Theorem (van Rooij, Bodlaender, Rossmanith, 2009)

[σ, %]-Dominating set can be solved in time O∗
(
stw

)
, if σ and

% are both �nite or co�nite, where s is the minimum number of

states needed to represent σ and %.

Corollary

Independent set can be solved in time O∗(2tw).
[Niedermeier, 2006]

Dominating set can be solved in time O∗(3tw).
[van Rooij, Bodlaender, Rossmanith, 2009]

Under SETH hypothesis, this time complexity is optimal.

[Lokshtanov, Marx, Saurabh, 2010]

8/25

Known results

Theorem (van Rooij, Bodlaender, Rossmanith, 2009)

[σ, %]-Dominating set can be solved in time O∗
(
stw

)
, if σ and

% are both �nite or co�nite, where s is the minimum number of

states needed to represent σ and %.

Corollary

Independent set can be solved in time O∗(2tw).
[Niedermeier, 2006]

Dominating set can be solved in time O∗(3tw).
[van Rooij, Bodlaender, Rossmanith, 2009]

Under SETH hypothesis, this time complexity is optimal.

[Lokshtanov, Marx, Saurabh, 2010]

9/25

Extension of FPT cases

Using the famous Courcelle's theorem: [Courcelle, 1997]

If σ and % are �nite or co�nite, then [σ, %]-Dominating set is

expressible in MSOL2.

→ FPT when parameterized by tree-width.

∃S , S̄ ∀v ∈ V : (v ∈ S ∧ v /∈ S̄) ∨ (v /∈ S ∧ v ∈ S̄)

∧ v ∈ S ⇒ |N(v) ∩ S | ∈ σ
∧ v ∈ S̄ ⇒ |N(v) ∩ S | ∈ %

|N(v) ∩ S | ∈ σ ≡ ∨
i∈{1,...,kσ} ∃YS

(
Cardtσ

i
(YS) ∧

∨
p∈σ,p≤pσ ∃u1,...,up ζ

)
avec ζ ≡

[(
ui∈(N(v)∩S)∧ui /∈YS

)
∧∀u (u 6=ui)

]
⇒
(
u∈YS⇔u∈(N(v)∩S)

)

9/25

Extension of FPT cases

Using an extension of the famous Courcelle's theorem:

[Courcelle, Makowsky, Rotics, 2001]

If σ and % are ultimately periodics, then [σ, %]-Dominating set

is expressible in CMSOL.

→ FPT when parameterized by tree-width.

∃S , S̄ ∀v ∈ V : (v ∈ S ∧ v /∈ S̄) ∨ (v /∈ S ∧ v ∈ S̄)

∧ v ∈ S ⇒ |N(v) ∩ S | ∈ σ
∧ v ∈ S̄ ⇒ |N(v) ∩ S | ∈ %

|N(v) ∩ S | ∈ σ ≡ ∨
i∈{1,...,kσ} ∃YS

(
Cardtσ

i
(YS) ∧

∨
p∈σ,p≤pσ ∃u1,...,up ζ

)
avec ζ ≡

[(
ui∈(N(v)∩S)∧ui /∈YS

)
∧∀u (u 6=ui)

]
⇒
(
u∈YS⇔u∈(N(v)∩S)

)

9/25

Extension of FPT cases

Using an extension of the famous Courcelle's theorem:

[Courcelle, Makowsky, Rotics, 2001]

If σ and % are ultimately periodics, then [σ, %]-Dominating set

is expressible in CMSOL.

→ FPT when parameterized by tree-width.

∃S , S̄ ∀v ∈ V : (v ∈ S ∧ v /∈ S̄) ∨ (v /∈ S ∧ v ∈ S̄)

∧ v ∈ S ⇒ |N(v) ∩ S | ∈ σ
∧ v ∈ S̄ ⇒ |N(v) ∩ S | ∈ %

|N(v) ∩ S | ∈ σ ≡ ∨
i∈{1,...,kσ} ∃YS

(
Cardtσ

i
(YS) ∧

∨
p∈σ,p≤pσ ∃u1,...,up ζ

)
avec ζ ≡

[(
ui∈(N(v)∩S)∧ui /∈YS

)
∧∀u (u 6=ui)

]
⇒
(
u∈YS⇔u∈(N(v)∩S)

)

10/25

Extension of FPT cases

Theorem
[σ, %]-Dominating set can be solved in time O∗

(
stw

)
, if σ and

% are both ultimately periodics, where s is a small function on the

minimum number of states needed to represent σ and % by two

automata.

s = |σ0|+ |%0|+ maxperiod(σ)2 + maxperiod(%)2

11/25

Algorithm idea

We use two �nite deterministic unary-language automata to

enumerate σ and %.

q0 q2 q3 q5q1 q4

The state associated to a given vertex v ∈ V encode:

• whether v is in D (state in σ) or not in D (state in %);

• the number of neighbors it has in D.

11/25

Algorithm idea

We use two �nite deterministic unary-language automata to

enumerate σ and %.

q0 q2 q3 q5q1 q4

The state associated to a given vertex v ∈ V encode:

• whether v is in D (state in σ) or not in D (state in %);

• the number of neighbors it has in D.

12/25

Algorithm idea

Algorithm idea

• Represent σ and % by two �nite unary-language automata;

• Apply a classical dynamic programming scheme on a (nice)

tree decomposition of the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the two automata;

• Use fast subset convolution to fasten the join operation.

Theorem
[σ, %]-Dominating set can be e�ciently solved in FPT time if

σ and % are both ultimately periodics.

12/25

Algorithm idea

Algorithm idea

• Represent σ and % by two �nite unary-language automata;

• Apply a classical dynamic programming scheme on a (nice)

tree decomposition of the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the two automata;

• Use fast subset convolution to fasten the join operation.

Theorem
[σ, %]-Dominating set can be e�ciently solved in FPT time if

σ and % are both ultimately periodics.

12/25

Algorithm idea

Algorithm idea

• Represent σ and % by two �nite unary-language automata;

• Apply a classical dynamic programming scheme on a (nice)

tree decomposition of the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the two automata;

• Use fast subset convolution to fasten the join operation.

Theorem
[σ, %]-Dominating set can be e�ciently solved in FPT time if

σ and % are both ultimately periodics.

12/25

Algorithm idea

Algorithm idea

• Represent σ and % by two �nite unary-language automata;

• Apply a classical dynamic programming scheme on a (nice)

tree decomposition of the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the two automata;

• Use fast subset convolution to fasten the join operation.

Theorem
[σ, %]-Dominating set can be e�ciently solved in FPT time if

σ and % are both ultimately periodics.

12/25

Algorithm idea

Algorithm idea

• Represent σ and % by two �nite unary-language automata;

• Apply a classical dynamic programming scheme on a (nice)

tree decomposition of the input graph;

• Encode the number of selected neighbors of each vertex using

the corresponding state in one of the two automata;

• Use fast subset convolution to fasten the join operation.

Theorem
[σ, %]-Dominating set can be e�ciently solved in FPT time if

σ and % are both ultimately periodics.

Some de�nitions

FPT cases

W[1]-hardness

Conclusion

14/25

Motivation

Question

Is [σ, %]-Dominating set always FPT when parameterized by

tree-width?

Remark
Very few parameterized graph problems are known not to be FPT

when parameterized by tree-width.

Lemma
For any polytime decidable sets σ and %, [σ, %]-Dominating
set is in XP when parameterized by tree-width.

14/25

Motivation

Question

Is [σ, %]-Dominating set always FPT when parameterized by

tree-width?

Remark
Very few parameterized graph problems are known not to be FPT

when parameterized by tree-width.

Lemma
For any polytime decidable sets σ and %, [σ, %]-Dominating
set is in XP when parameterized by tree-width.

15/25

Some W[1]-hard cases

Theorem
If σ exclude arbitrary long intervals and % is co�nite, then

[σ, %]-Dominating set is W[1]-hard when parameterized by tw.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

t ≤ 2 t ≤ 4 t ≤ 6 t ≤ 8

Technical condition on σ:
We require that an excluded interval of length t can be found at

distance poly(t).

15/25

Some W[1]-hard cases

Theorem
If σ exclude arbitrary long intervals and % is co�nite, then

[σ, %]-Dominating set is W[1]-hard when parameterized by tw.

Given σ and %, we will reduce k-Capacitated dominating

set to [σ, %]-Dominating set.

k-Capacitated dominating set is W[1]-hard when param-

eterized by the tree-width of the input graph + the size k of the

expected solution.

[Dom, Lokshtanov, Saurabh, Villanger, 2008]

16/25

Two-steps reduction

Step 1

k-Capacitated dominating set

�fpt

[σ, %]-Dominating set with preselected vertices

Step 2

[σ, %]-Dominating set with preselected vertices

�fpt

[σ, %]-Dominating set

16/25

Two-steps reduction

Step 1

k-Capacitated dominating set

�fpt

[σ, %]-Dominating set with preselected vertices

Step 2

[σ, %]-Dominating set with preselected vertices

�fpt

[σ, %]-Dominating set

17/25

Capacitated domination

De�nition
Let G = (V ,E), cap : V → N.
(C , dom) is a capacitated dominating set of G , with

C ⊆ V and dom(v) a function which associates to each vertex

v ∈ C a subset of its vertices, if:

• ∀v ∈ C , |dom(v)| ≤ cap(v);

• ∀u /∈ C , ∃v ∈ C : u ∈ dom(v).

2 4 1

1

2

3

2

1

1

3

17/25

Capacitated domination

De�nition
Let G = (V ,E), cap : V → N.
(C , dom) is a capacitated dominating set of G , with

C ⊆ V and dom(v) a function which associates to each vertex

v ∈ C a subset of its vertices, if:

• ∀v ∈ C , |dom(v)| ≤ cap(v);

• ∀u /∈ C , ∃v ∈ C : u ∈ dom(v).

2 4 1

1

2

3

2

1

1

3

17/25

Capacitated domination

De�nition
Let G = (V ,E), cap : V → N.
(C , dom) is a capacitated dominating set of G , with

C ⊆ V and dom(v) a function which associates to each vertex

v ∈ C a subset of its vertices, if:

• ∀v ∈ C , |dom(v)| ≤ cap(v);

• ∀u /∈ C , ∃v ∈ C : u ∈ dom(v).

2 4 1

1

2

3

2

1

1

3

17/25

Capacitated domination

De�nition
Let G = (V ,E), cap : V → N.
(C , dom) is a capacitated dominating set of G , with

C ⊆ V and dom(v) a function which associates to each vertex

v ∈ C a subset of its vertices, if:

• ∀v ∈ C , |dom(v)| ≤ cap(v);

• ∀u /∈ C , ∃v ∈ C : u ∈ dom(v).

k-Capacitated dominating set

Input: G = (V ,E) of tree-width tw, and cap : V → N.
Parameter: k + tw.

Question: Decide whether G admits a capacitated dominating set

(C , dom) such that |C | ≤ k .

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

2 4 1

1

2

3

2

1

1

3

2 4 1

1

2

3

2

1

1

3

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

18/25

Reduction (step 1)
Let G be an instance of k-Capacitated dominating set.

Starting with H = I (G) (incidence graph), we add several gadgets:

domination (D) : force G to admit a (classical) dominating set;

capacity (C) : encode the capacity function cap, and allows

a selected vertex to be satis�ed;

edge-selection (E) : encode the domination function dom;

satis�ability (S) : allow a non-selected vertex to be satis�ed;

limitation (L) : encode the parameter k .

D

S C E

D

S C

D

S C

L

D

S CE

19/25

Gadgets (step 1)

domination (D) edge-selection (E) satis�ability (S)

capacity (C) limitation (L)

= preselected vertex

20/25

Use of arbitrary long excluded intervals

minσ{p | ∀i ≤ d(v), p+ i /∈ σ} − cap(v)− 1 vertices

← cap(v) vertices

gadget capacity (C)

21/25

Two-steps reduction

Step 1

k-Capacitated dominating set

�fpt

[σ, %]-Dominating set with preselected vertices

Step 2

[σ, %]-Dominating set with preselected vertices

�fpt

[σ, %]-Dominating set

22/25

Reduction (second step)

Let H be an instance of [σ, %]-Dominating set with

preselected vertices. We construct H ′ as follows:

β independent vertices

α copies of H

α = min{q | q ∈ σ ∩ %}
β = min{p − 1 | σmin + p ∈ σ}

23/25

Two-steps reduction

Step 1

k-Capacitated dominating set

�fpt

[σ, %]-Dominating set with preselected vertices

Step 2

[σ, %]-Dominating set with preselected vertices

�fpt

[σ, %]-Dominating set

Some de�nitions

FPT cases

W[1]-hardness

Conclusion

25/25

Conclusion

Results

• If σ and % are ultimately periodics, then [σ, %]-Dominating
set is FPT when parameterized by tree-width.

• If σ exclude arbitrary long intervals and % is co�nite, then

[σ, %]-Dominating set is W[1]-hard when parameterized

by tree-width.

And now?

• In which W[t] class does this problem fall?

• What about other cases of [σ, %] (e.g. with bounded intervals)?

• Other W[1]-hard problems parameterized by tree-width?

And voilà!

25/25

Conclusion

Results

• If σ and % are ultimately periodics, then [σ, %]-Dominating
set is FPT when parameterized by tree-width.

• If σ exclude arbitrary long intervals and % is co�nite, then

[σ, %]-Dominating set is W[1]-hard when parameterized

by tree-width.

And now?

• In which W[t] class does this problem fall?

• What about other cases of [σ, %] (e.g. with bounded intervals)?

• Other W[1]-hard problems parameterized by tree-width?

And voilà!

25/25

Conclusion

Results

• If σ and % are ultimately periodics, then [σ, %]-Dominating
set is FPT when parameterized by tree-width.

• If σ exclude arbitrary long intervals and % is co�nite, then

[σ, %]-Dominating set is W[1]-hard when parameterized

by tree-width.

And now?

• In which W[t] class does this problem fall?

• What about other cases of [σ, %] (e.g. with bounded intervals)?

• Other W[1]-hard problems parameterized by tree-width?

And voilà!

25/25

Conclusion

Results

• If σ and % are ultimately periodics, then [σ, %]-Dominating
set is FPT when parameterized by tree-width.

• If σ exclude arbitrary long intervals and % is co�nite, then

[σ, %]-Dominating set is W[1]-hard when parameterized

by tree-width.

And now?

• In which W[t] class does this problem fall?

• What about other cases of [σ, %] (e.g. with bounded intervals)?

• Other W[1]-hard problems parameterized by tree-width?

And voilà!

	Some definitions
	FPT cases
	W[1]-hardness
	Conclusion

