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Multiobjective optimization

A solution is evaluated with respect to several optimality criteria.

Example:

shortest path with respect to:
-minimum distance
-minimum cost

-minimum delay




Most used approaches in TCS

Given k objective functions f;, i =1,...,k

e optimization of a linear combination of the objective functions
: k
- min ) . a;f;

e optimization of one criterion given bounds for the others

- min fy s.t. fo < b, -0, fr < by

for chosen bounds b, - - - , by




Simultaneous approximation

An («, B)-approximation algorithm produces a solution that, in the worst
case, is within

- of optimal for the first criterion, and

-5 of optimal for the second criterion.
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Existence results for bicriteria scheduling problems

Previous works: Stein and Wein 97, Aslam et al 99, Rasala et al 01.
Objectives: makespan and sum of weighted completion times

Idea [SW]: Given two optimal schedules o1 and o for the makespan and the

sum of weighted completion times, apply procedure




Existence results for bicriteria scheduling problems

Previous works: Stein and Wein 97, Aslam et al 99, Rasala et al 01.
Objectives: makespan and sum of weighted completion times

Idea [SW]: Given two optimal schedules o1 and o for the makespan and the

sum of weighted completion times, apply procedure

COMBINE(oq, 03)
1. Let K be the set of jobs which complete after C.x in o9
2. Create o5 from oy by removing from oy all jobs in K
3. Create o7 by removing from o all jobs in J — K

4. Create o’ by appending o7 to the end of o
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Theorem|SW]|: There is a (2, 2)-approximate schedule.

The existence of an («, 8)-approximate solution implies the existence of an

approximation algorithm. If for

-Metric A: z-approximation
-Metric B: y-approximation

then, there is an (ax, By)-approximation for the bicriterion problem.
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Bicriteria scheduling with communication delays

|lwith A. Kononov|

G=(V,FE) t; = starting time of task 4
7, = processor on which ¢ is executed
p; = execution time of ¢
w,; = weight of ¢

V(i,7) € E we have a communication delaly c¢;;
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Formulation of the problem

G

(V,E) t; = starting time of task ¢
7, = processor on which ¢ is executed
p; = execution time of ¢
w,; = weight of ¢

V(i,j) € E we have a communication delaly c¢;,

A feasible schedule:

° wmﬁ.@.”ﬁm ﬁ?@ﬁﬁl_lﬁs.Awu

e otherwise t; + p; + Cij <t
Objectives: minimize
-the time at which the last task of G finishes its execution (denoted by C).q.)

-the average weighted completion time ) w;C;
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Main relaxations

Restrited execution/communication times
UET: VieV p; = 1, <A§%v ck Cij = 0

UET-UCT: VieV p; = 1, <As?: ck Cij = 1

Bﬁ?

. L 1€

SCT: ® = ey > |
(k,j)EE

Unrestricted number of processors
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Idea of the algorithm:

Formulate each monocriterion problem as an ILP

Solve the ILPs, and consider the obtained pseudoschedules

Use COMBINE and concatenate parts of these pseudoschedules

Round the values of the variables to get a feasible schedule
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ILP formulations

ILPnax :

/

VieV,

| VieV,

min Cmax (ILPx :
<A§wv clb, x;;¢€ ﬁov Huv

ti >0

<Asfwv celb, ti+pi+xij cij <t

{VieV U, > m; > |TT(3{) -1

VieV -2, Y zp>|l7@) -1

min »  w,;C}))
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O

ILP ILP
max sigma
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Notations

-LPmax (resp. LPx) will assign to every arc (i,j) € E a value x;; = e;; with

0 <ei; <1 (resp. m; = e;; with 0 <ef, <1).

-CLPmax (vesp. (D w;C;)1=): a lower bound of the value of Cyax (resp.

> w;Cj).

~gtPmax (resp. olP®)

LPax (resp. LPy)

is the pseudo-schedule obtained by the solution of

-Q%wamx (resp. Q%wmv is the completion time of task j.
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Procedure Combine

COMBINE(gltmax glPs ¢)

1. Let V' be the set of tasks that complete after time ¢ in the schedule %=,
Let Es be the set of arcs (i,j) € E withi € V -V’ and j € V.

2. All the incoming arcs of the tasks in V' — V' keep unchanged their

valuation of o2¥*, and the valuation of all arcs (4,5) € E, such that ¢ € V'

is modified and becomes equal to the valuation of gl Fmax,

/ 1

3. Every (i,j) € Ey, gets the valuation max{e;;, €]’ }.
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Procedure Round

PROCEDURE ROUND (o)

1. If e}, < 0.5 (resp. e;; < 0.5) then x;; =0
2. Od?@ﬁdﬁmmv Li; = 1.

3. Define the completion times of the tasks by setting

. Pj, if .w < N“
I max Qs.|_|%u. + X;5Cij, if g€ </N
i€~ (7)
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Overall algorithm

OVERALL ALGORITHM BIC (gitmax glP= ¢)

1. Solve LP,.x and LPx.
2. 0 =COMBINE(glfmax gLz )

3. ROUND(0).

Lemma [KM| For the makespan (resp. average completion time) schedule
obtained after rounding, we have C; < WQ%N;% (resp. C; < mQ%wmx\E; each
jev.
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1/2 1

o Y212 o V2 12 2 A2 12 12 102
1/2 1/2
1\, 12\ 172\ 172 \ 12\ 1/2
1/2 1/2
O O O O

O

result of COMBINE

1 1 1 1 1 1 1 1 1 1
O—=0——=Q==0—=0"=0=0—=0—=0—=0
1 1
1\ 1 1 1 1
O O O O O

after the rounding
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Performance analysis

I.~.\. — Qhwsm.x

max

-Let K be sum of the processing times of the tasks on the (a) critical path

-Let J be the set of tasks in the considered critical path and J’ be the subset
of tasks of the critical path that belong to V', i.e. the tasks of the critical
path with C;"> > CLDmax.

max

-Let M be the sum of the processing times of the tasks 7 € J' and L be the
sum of the processing times of the tasks j € J — J’ i.e. the tasks with

L Px LPax
Qu. m ngx I

-Let § be the sum of the values of ¢;; (the valuation of the arcs in the
pseudo-schedule gZFmax) for all the arcs that belong to J.

-Let Cy (resp. C3) the makespan of the partial schedule involving the tasks of
the critical path belonging to J' (resp. J — J').
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J-J

proc. time L

J proc. time M

after the rounding
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Proof

IQ%MNEQX N NI_IM.
Oy < M +2¢
-Cy < 2L —1

Chax < C1 +Cs 4+ 1.

Crax <20+ M +2¢ = K + (K — M) + 26 < 205 max . (1)
-C; <2M —1
Cp < §CEEr
4
Crax < =ChPmax 1 9 0f (2)

— w max
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Makespan:
16 .N\.NUEQN
|wQHBmx m anmx .
QBmR 16
“PCrmax = LPon < 9
max

The completion time C; of every task:
-j € J —J' is at most mQ%wmu
-7 € J’ the following inequalities hold:

L P
Cj < Cmax < ¢ Ca= < §C;77.

max

Theorem The algorithm BIC(Crime>) is a (%, 3)-bicriteria approzimation

algorithm.
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Other results:

-Improved bounds: map average weighted completion time schedules to

probality density functions
(1.777,1.777) — (1.745,1.745)

-(Lmax; ) w; L)

-bounded number of processors
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Monocriteria case

Poolprec; cij = 1;pi = 1|Cmax | Poo|prec;ci; = 1;p; = 1| w; Cj

4/3 [KM] 4/3 [KM]

Plprec;cij = 1;pi = 1|Cmax Plprec;cij = 15pi = 1] Y w;C;

7/3 [HM] 10/3 [MSS]

29




Bicriteria case

woo_.ﬁ\\.QO st — H Nws — H_A B@Xumgu v

Existence Algorithm
[ARSY] this paper [ARSY] this paper
e? e? 4 4
(14 ¢ =) G._lmu}v :H._'%vwvﬂv Am._'m@“w 02 vwv
¢ € (0,1] ¢ € (0,1] ¢ € (0,1] ¢ €(0,3/2)
(1.806,1.806) | (1.445,1.445) (2,2) (1.745,1.745)

w_ﬁﬁmn Cij = 1;ps = H_A me“MU\Eu v

Algorithm (this paper)

G308 +30-361 -1, o€

2)
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Tradeoff solutions

We are interested in the set of all feasible solutions whose vector of the

various optimality criteria is not dominated by the vector of another solution

Formally, P(z) is the set of all k-vectors s.t. for each v € P(x)

o S, S.t. .\wAmv — V;, V1

o s, st fi(s') < w;, Vi, with strict inequality for some 3
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P(z) formalizes the idea of tradeoff
but it is often computationally problematic

- for many problems P(z) is exponentially large

- determining if a particular solution belongs to P(z) is often NP-hard
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Approximate tradeoffs

P.(z) is a set of feasible solutions whose vector of the various optimality
criteria approximately dominates all other solutions, i.e. for every other
solution, P.(x) contains a solution that is approximately (within a factor 1+ ¢
as good as this solution in all objectives

Theorem [Pap Yan| P.(x) consists of a number of solutions that is
polynomial in |z| and 1/¢
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Approximate tradeoffs

Theorem |[Pap Yan| There is a FPTAS for computing the convex hull of a
P.(z), if there is a FPTAS for the monocriterion problem.

Theorem [Pap Yan| There is a FPTAS for computing a P.(x) for a
multicriterion problem with linear objectives, if there is a (pseudopolynomial)
algorithm for solving the exact version of the monocriterion problem.

-Shortest path P
-MST P
-matching RNC
-MIN-CUT NP-hard
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Approximating the Pareto curve for the bicriteria TSP(1,2) problem

|with Eric Angel and Laurent Gourvés|

TSP (1,2)
Given a graph GG, we search for a hamiltonian cycle using the fewest possible

non-edges.

Bicriteria TSP(1,2)

Given two graphs G; and G5, we search for a common hamiltonian cycle using

the fewest possible non-edges in each graph.

38



TSP(1,2)

TSP where the distances are either 1 or 2.

Known results for TSP (1,2)
-NP-hard |Karp|

-Best approximation ratio: 7/6 [PY]

-Local search for using the 2-opt neighborhood gives a 3/2-approximation
|Khanna et al.]

Remark: For metric TSP the worst-case performance ratio of 2-opt is least

.
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Bicriteria TSP(1,2)

Given: a complete graph with every edge associated to a couple of distances
which are either 1 or 2.

For an edge e, we shall note c(e) € {(1,1),(1,2),(2,1),(2,2)} its cost, and
c(e) = (c1(e); c2(e))-

Given a tour T (set of edges), the objective functions are:

G1(T) = 2 cercr(e) and Go(T) = 3 o7 ca(e).

Known results for multicriteria TSP: Meta-heuristics with no

guaranteed performance.
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Given a tour T, its neighborhood N (T'), is the set of all the tours which can
be obtained from T by removing two non adjacent edges from T and inserting
two new edges in order to obtain a new tour.

Xay X Yy
| 2-opt

v bu V u

Tour T Tour T’

Figure 1: The 2-opt move.
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Local optimum

Natural preference relation

Given two tours T and T”, we have T < T iff
o (71 AM&V < Gy AMJV and QMAM&V < Go AMJV
o (4 AMJ\V < G4 AMJV and QMAM&V < Go AMJV

Not sufficient
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Local optimum

) 2 S (et S
@“ | | @] | @ @u | |&2] | @Y
wvw T Awuwvwl Trwv | T Awuwvwl Aw“%v
(3,2) (3,4) (4,4) (3:2) (4,3) (4,4)
(3,3)4 N N (3,3)1 N N
(a) The preference relation <j. (b) The preference relation <s.

For any s1 € 51, s2 € S, s3 € S3, we have s1 <; s2, s1 <; s3 and sy <; S3,
i=1,2
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(1,1)+ (1,1)

(1,1)+(1,2)

(1,1)+(2,1)

(1,1)+(2,2)

(2,1)+ (2,2)

(2,2) + (2,2)
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(1,1)+ (1,1)

(1,1)+(1,2)

(1,1)+(2,1)

(1,1)+(2,2)

(1,2) + (2,2)

(2,2) + (2,2)
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BICRITERIA LOCAL SEARCH (BLS)

1. let s; be a 2-opt local optimum tour with the preference relation <4
2. let so be a 2-opt local optimum tour with the preference relation <s

3. if 51 < s9 output {s;1}, if so < s1 output {s3}, otherwise output {sq,ss}
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BICRITERIA LOCAL SEARCH (BLS):
1. let s1 be a 2-opt local optimum tour with the preference relation <4
2. let so be a 2-opt local optimum tour with the preference relation <s

3. if 81 < sg output {s1}, if s5 < s1 output {ss}, otherwise output {s1, sz}
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Results.

Theorem 1 The set of solution(s) returned by the Bicriteria Local Search
(BLS) procedure is a 3/2-approximate Pareto curve for the multicriteria
TSP(1,2) problem. Moreover, this bound is asymptotically sharp.

Theorem 2 The running time of the local search algorithms in BLS until
they reach a local optimum solution is O(n).

48




Sharpness of the bound

11

n+2 Sn+1

Figure 2: The edges represented have a weight (1,1), whereas non represented
edges have a weight (2, 2).
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Idea of the proof

Let us denote by x (resp. y,z and t) the number of (1,1) (resp. (1,2), (2,1)

and (2,2)) edges in tour 7. We denote with a prime the same quantities for
the tour O.

Lemma 1 With the preference relation <; one has z > z'/2.
Lemma 2 With the preference relation <; one has z +y > (2’ + ') /2.

Lemma 3 With the preference relation <5 one has z + z > (2’ 4+ 2") /2.
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Proposition 1 If the tour O has a cost (X, X + «) with X an arbitrary
positive integer and o > 0, then the solution T achieves a performance

guarantee of 3/2 relatively to the solution O for both criteria.

Proposition 2 If the tour O has a cost (X 4+ «, X) with a > 0, then the
solution T" achieves a performance guarantee of 3/2 relatively to the solution
O for both the criteria.
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Idea of the proof (2)

Proof Let s be an arbitrary tour.

If s has a cost (X, X + «), a > 0, then using Proposition 1 the solution s;
3/2-approximately dominates the solution s.

Otherwise, s has a cost (X + a, X ), a > 0, and using Proposition 2 the
solution sy 3/2-approximately dominates the solution s.
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Proof of Theorem 2

Let T be an arbitrary tour, and Fy(7T) = 3x + y with x (resp. y) the number
of (1,1) (resp. (1,2)) edges. Clearly, 0 < F1(T) =3z +y < 3(x +y) < 3n.

Assume that T' <1 T, then Fy(T') > F1(T) + 1 for any 2-opt move
Indeed, each 2-opt move:
-increases the number of (1,2) without decreasing the number of (1,1)s, or

-increases the number of (1,1) by decreasing the number of (1,2)s by at most
2.
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Concluding remarks

Almost every problem in practice, especially in networks, is multiobjective
(performance vs. cost).

There is a need for new algorithmic tools dealing with multiobjective problems
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Concluding remarks

Almost every problem in practice, especially in networks, is multiobjective
(performance vs. cost).

There is a need for new algorithmic tools dealing with multiobjective problems

Once more, we need to go

FROM PRACTICE TO THEORY
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