L'approximation polynomiale et ses enjeux : une promenade dans le jardin enchanté de l'approximation polynomiale

Vangelis Th. Paschos

paschos@lamsade.dauphine.fr

27 juin 2003

Faire face aux problèmes NP-difficiles

- calculée par rapport à la rapidité du calcul; méthodes exactes : privilégient la qualité de la solution
- heuristiques : la rapidité du calcul d'une solution prime sur son optimalité
- méthodes polyhèdrales ;
- métaheuristiques ;
- recherche locale;
- algorithmes polynomiaux approchés avec garanties de performance

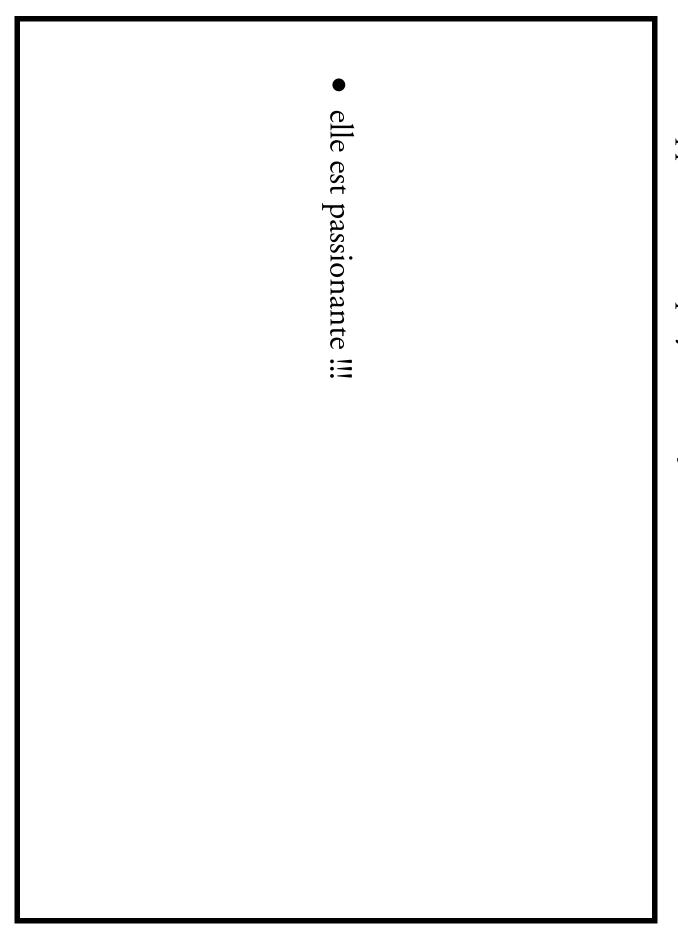
Qu'est-ce-que l'appoximation polynomiale?

temps polynomial (dans un sens prédéfini) de la valeur optimale et tout cela en C'est l'art d'obtenir des solutions réalisables, de valeur proche

Pourquoi l'approximation polynomiale?

Parce que:

- il existe des problèmes réels où :
- sont exigées des solutions réalisables obtenues rapidement, i.e., en temps polynomial;
- l'optimum est mal défini ou il n'a pas de sens ;
- il est nécessaire d'avoir une estimation a priori de la qualité de l'algorithme;
- elle est le prolongement naturel de la théorie de la complexité dans l'optimisation combinatoire et contribue à l'enrichissement mutuel des deux domaines;



Notions de base et notations

Un problème II de NPO à valeurs entières est un quadruplet $(\mathcal{I}, \operatorname{Sol}, m, \operatorname{opt})$ qui vérifie :

- ${\mathcal I}$ est l'ensemble des instances de Π ; tout $I\in{\mathcal I}$ est reconnaissable en temps polynomial en $\left|I\right|$ (sa taille) ;
- $\forall I \in \mathcal{I}$, $\mathrm{Sol}(I)$ est l'ensemble des solutions réalisables de I; solution $\operatorname{triv}(I) \in \operatorname{Sol}(I)$ en temps polynomial en |I| ; pour polynomial en |I|; enfin, $\forall I \in \mathcal{I}$, on sait déterminer une tout $S \in \mathrm{Sol}(I)$ est représentable et décidable en temps $I \in \mathcal{I}$ et $S \in \operatorname{Sol}(I)$, m(I,S) est la valeur de la solution S;
- $m: \mathcal{I} \times \mathrm{Sol} \to \mathbb{N}$ est calculable en temps polynomial en |I|;
- opt $\in \{\min, \max\}$

Pour $\Pi = (\mathcal{I}, \text{Sol}, m, \text{opt})$:

 $\mathrm{opt}(I)$: la valeur d'une solution optimale

 $\omega(I)$: la valeur d'une pire solution, *i.e.*, la solution optimale du problème $\Pi' = (\mathcal{I}, \text{Sol}, m, \text{opt'})$ avec

$$opt' = \begin{cases} max & si \text{ opt} = min \\ min & si \text{ opt} = max \end{cases}$$

Pour un algorithme approché A:

 $m_{\mathtt{A}}(I,S)$, la valeur de la solution S calculée par \mathtt{A} sur I

Rapport d'approximation classique pour A:

$$\rho_{\mathtt{A}}(I) = \frac{m_{\mathtt{A}}(I,S)}{\mathrm{opt}(I)}$$

Rapport d'approximation différentielle pour A:

$$\delta_{\mathbf{A}}(I) = \frac{|\omega(I) - m_{\mathbf{A}}(I, S)|}{|\omega(I) - \operatorname{opt}(I)|}$$

performance d'un algorithme approché Plus les rapports sont proches de 1, meilleure est considérée la

algorithmes approchés Classification absolue des problèmes et des

- Algorithmes à rapports dépendant de l'instance :
- rapport exponentiel en |I| Exp-APX, Exp-DAPX; exemple en Exp-APX: MIN TSP;
- rapport polynomial en |I| Poly-APX, Poly-DAPX
- exemples en Poly-APX: MAX STABLE, MAX CLIQUE, COLORATION, ...;
- exemples en Poly-DAPX: MAX STABLE, MAX CLIQUE, MIN VERTEX COVER, MIN SET COVER, ...;
- rapport logarithmique en |I| Log-APX, Log-DAPX; exemples en Log-APX: MIN SET COVER, MIN DOMINATING

ullet Algorithmes à rapports constants (indépendant de |I|) — **APX**,

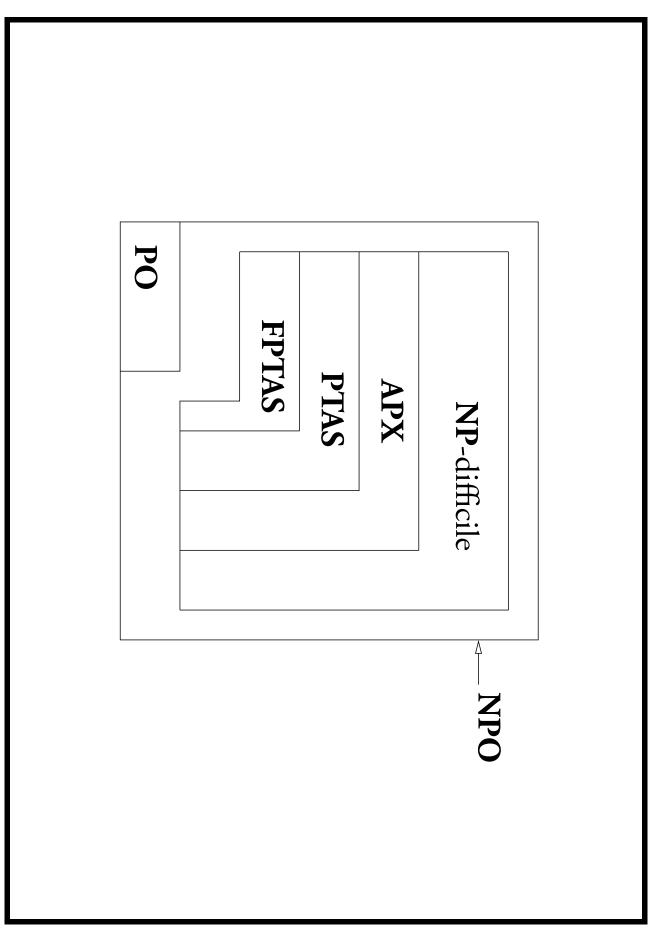
exemples en APX: MIN VERTEX COVER, MIN METRIC TSP, BIN PACKING, MAX TSP, ...;

exemples en DAPX: MIN et MAX TSP, COLORATION, ...;

- exponentielle en $1/\epsilon$ PTAS, DPTAS $\forall \epsilon > 0$ et à complexité polynomiale en |I| mais, éventuellement, opt = max, ou en différentiel pour tout type d'optimisation), paramétrés par ϵ à rapports $1 + \epsilon$ (si opt = min), ou $1 - \epsilon$ (si Schémas polynomiaux d'approximation : suites d'algorithmes
- exemples en PTAS: MIN VERTEX COVER OU MAX STABLE dans les graphes planaires, MIN TSP EUCLIDIEN, ...;
- exemples en DPTAS: MIN VERTEX COVER OU MAX STABLE PONDÉRÉE dans des graphes bipartis, ...; dans les graphes planaires, BIN PACKING, COLORATION

exemple en FPTAS et DFPTAS: SAC-À-DOS en |I| et en $1/\epsilon$ — FPTAS, DFPTAS d'optimisation), $\forall \epsilon > 0$ et à complexité polynomiale à la fois ou $1 - \epsilon$ (si opt = max ou en différentiel pour tout type d'algorithmes paramétrés par ϵ à rapports $1 + \epsilon$ (si opt = min) Schémas complètement polynomiaux d'approximation : suites

Tutorial sur l'Approximation polynomiale, JFRO 27/6/03



Remarques:

- Un problème est classifié par rapport au meilleur rapport d'approximation actuellement connu pour lui
- Il y a en réalité un continuum des classes d'approximation

approchés Quelques exemples d'algorithmes

MIN VERTEX COVER

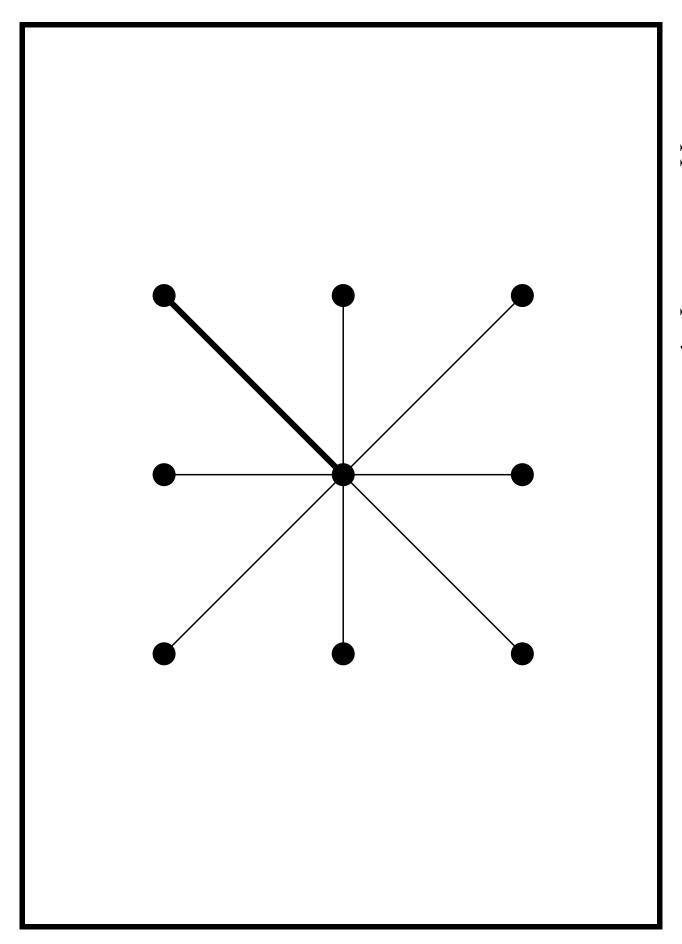
- 1. choisir une arête;
- mettre ses extrémités dans la solution en construction;
- 3. mettre à jour G;
- 4. répéter les étapes 1 à 3 jusqu'à ce que G soit vide en arêtes ;
- 5. retourner la solution construite

Le rapport de l'algorithme est majoré par 2 et ce rapport est

Pouvons-nous l'améliorer?

MIN VERTEX COVER \in $\mathbf{APX} \setminus \mathbf{PTAS}$

Tutorial sur l'Approximation polynomiale, JFRO 27/6/03



COLORATION

- 1. répéter : trouver un 3-stable S dans G, colorier les sommets que des 3-stables existent; de S avec la même nouvelle couleur et mettre à jour G tant
- 2. determiner une famille de 2-stables disjoints de taille sommets qui restent avec une couleur distincte chacun d'eux avec une nouvelle couleur; colorier chacun des maximum dans G (ayant survécu) et colorier les sommets de

COLORATION \in **DAPX** \setminus **DPTAS** inférieurement par 2/3 et ce rapport est atteint Le rapport différentiel de l'algorithme est borné

L'étape 2 colorie un graphe G avec $\alpha(G)=2$ de façon optimale

Réccurence sur n

Vrai pour $n \leqslant k$

Considérons un graphe d'ordre k + 1:

- s'il n'existe pas de 3-stable, l'algorithme a trouvé la coloration optimale et le résultat est vrai;
- supposons qu'un 3-stable S a été trouvé :

$$\chi(G[V \setminus S]) \leqslant \chi(G) \tag{1}$$

 $X\setminus S$ réalisable pour $G[V\setminus S]$ (et calculable par l'algorithme) : X: la solution retournée par l'algorithme

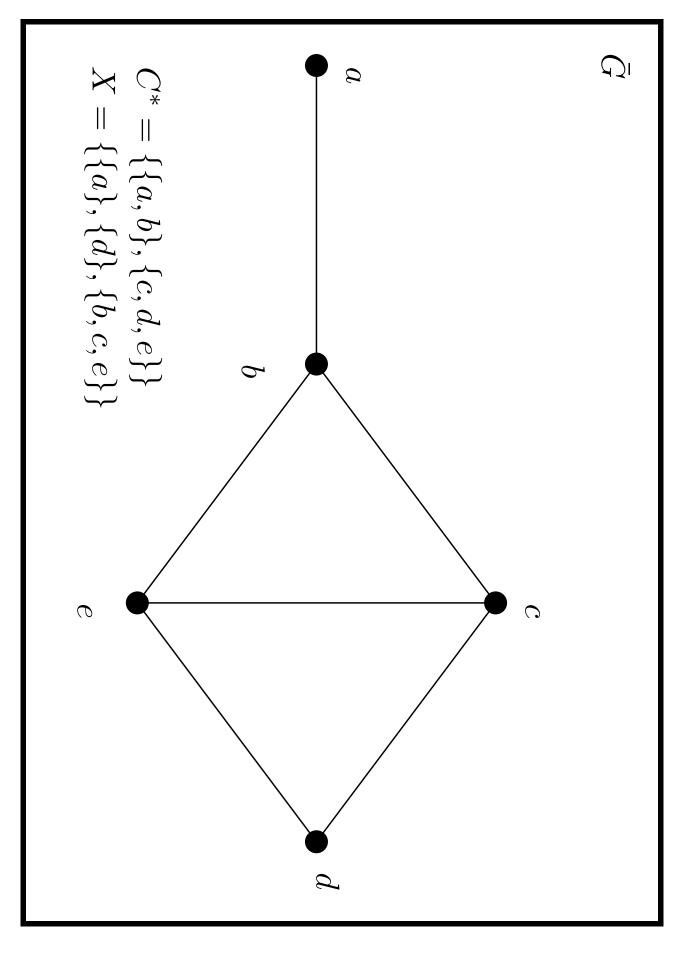
$$n - 3 - |X \setminus S| \geqslant \frac{2}{3}(n - 3 - \chi(G[V \setminus S])) \tag{2}$$

De (1) et (2):

$$n - |X| = n - |X \setminus S| - 1$$

$$\geqslant \frac{2}{3}(n - 3 - \chi(G[V \setminus S])) + 2$$

$$\geqslant \frac{2}{3}(n - \chi(G))$$



MAX STABLE

$$\max \ \vec{1} \cdot \vec{x}$$

$$A \cdot \vec{x} \leqslant \vec{1}$$

$$\vec{x} \in \{0, 1\}^n$$

$$\max \ \vec{1} \cdot \vec{x}$$

$$A \cdot \vec{x} \leqslant \vec{1}$$

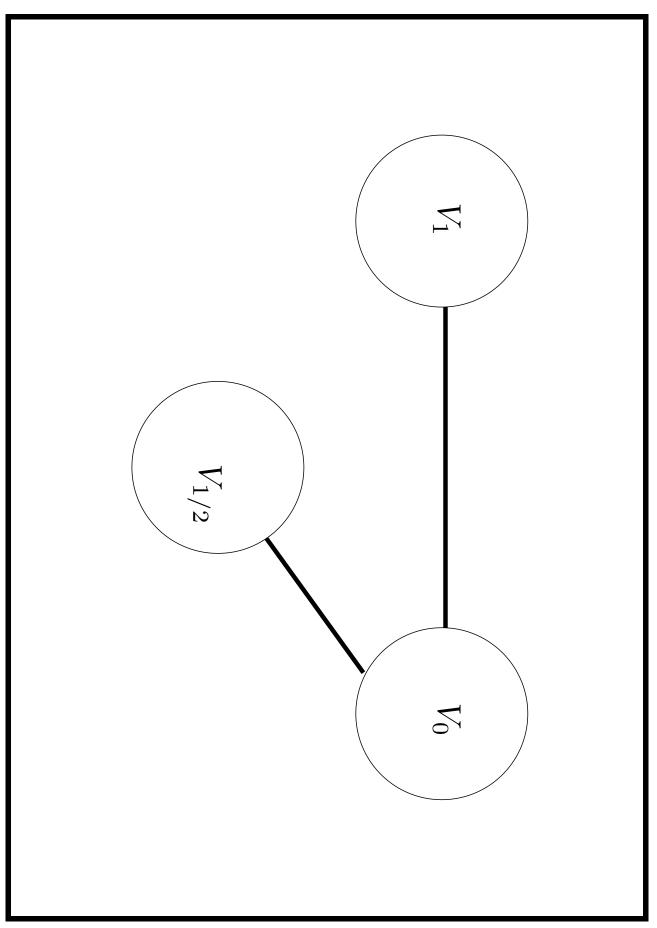
$$\vec{x} \in \{0, 1\}^n$$

$$\vec{x} \in \vec{0}, \vec{1}$$

$$\vec{x} \in \vec{0}, \vec{1}$$

sous-ensembles de V correspondant aux variables à 0, 1 et 1/2, STABLE telle que: respectivement, alors, il existe une solution optimale S^* de MAX valeurs dans l'ensemble $\{0, 1, 1/2\}$. Si V_0, V_1 et $V_{1/2}$ sont les Une solution optimale de MAX STABLE-R affecte aux variables des

- 1. $V_1 \subseteq S^*$;
- 2. $V_0 \subseteq V \setminus S^*$.



- résoudre max stable pondéré-r pour déterminer les ensembles V_0 , V_1 et $V_{1/2}$; $G := G[V_{1/2}]$;
- colorier G avec $\Delta(G)$ couleurs ; soit \hat{S} la plus lourde couleur;
- retourner $S := V_1 \cup \hat{S}$

par $2/\Delta(G)$ Le rapport d'approximation de l'algorithme est minoré

MAX STABLE \in Poly-APX

Meilleurs rapports connus:

 $O(\log^2 n/n)$

 $k/\Delta(G), \forall k > 0$ (asymptotique)

 $O(\log n/\Delta(G)\log\log n)$

$$S = V_1 \cup \hat{S}$$
 réalisable $S^* = V_1 \cup \hat{S}_{1/2}^*$

$$\begin{aligned} \left| \hat{S} \right| & \geqslant \frac{\left| V_{1/2} \right|}{\Delta(G)} \\ m(S,G) & = \left| |S| \right| & = \left| |V_1| + \left| \hat{S} \right| \geqslant |V_1| + \frac{\left| V_{1/2} \right|}{\Delta(G)} \\ \text{opt}(G) & = \left| |S^*| \right| & = \left| |V_1| + \left| S_{1/2}^* \right| \leqslant |V_1| + \frac{\left| V_{1/2} \right|}{2} \end{aligned}$$

MIN SET COVER

répéter : soit S_0 un ensemble de S de cardinalité maximum ; ce que $C := \emptyset$; mettre S_0 dans la solution S'; mettre à jour S et C; jusqu'à

 $(\Delta = \max_{S \in \mathcal{S}} \{|S|\})$ et il peut être asymptotiquement atteint Le rapport de l'algorithme est majoré par $1 + \ln \Delta$

MIN SET COVER \in Log-APX

 $m(I_i, \mathcal{S}')$ le nombre d'ensembles de cardinalité résiduelle i mis dans \mathcal{S}' elle des ensembles de S est inférieure ou égale à i $I_i(\mathcal{S}_i, C_i)$ l'instance au premier instant où la cardinalité maximum résidu-

$$C_{\Delta} = C \tag{3}$$

$$m(I, \mathcal{S}') = \sum_{i=1}^{n} m(I_i, \mathcal{S}')$$
 (4)

Pour $i = 1, \ldots, \Delta$:

$$|C_i| = \sum_{k=1}^{i} k \times m(I_k, \mathcal{S}')$$

et (4): Multiplier la ligne de C_{Δ} par $1/\Delta$ et les autres par 1/i(i+1) et utiliser (3)

$$\sum_{i=1}^{\Delta-1} \frac{|C_i|}{i(i+1)} + \frac{|C|}{\Delta} = \sum_{i=1}^{\Delta} m(I_i, \mathcal{S}') = m(I, \mathcal{S}')$$
 (5)

 \mathcal{S}^* une solution optimale pour I

 S_i^* une solution optimale pour I_i , $i=1,\ldots,\Delta$

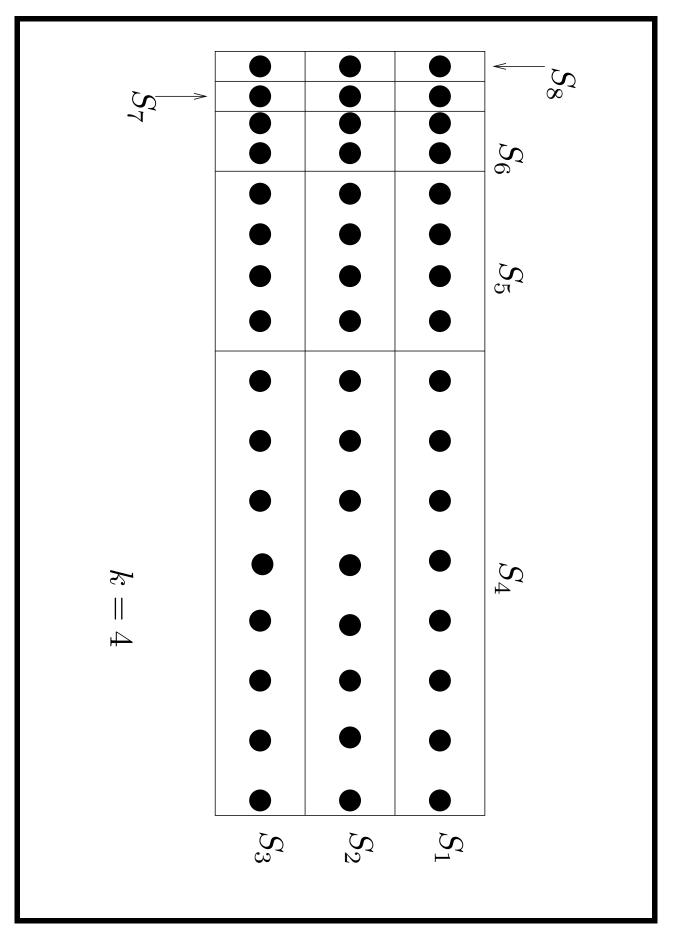
une solution réalisable pour I_i Les membres de S^* couvrant C_i sont toujours présents dans I_i et forment

$$opt(I_i) = |S_i^*| \leq |S^*| = opt(I)$$
 (6)

$$|C_i| \leqslant i \times \text{opt}(I_i)$$

Par (5), (6) et (7):

$$m(I, \mathcal{S}') \leqslant \operatorname{opt}(I) \times \sum_{i=1}^{\Delta} \frac{1}{i} \leqslant \operatorname{opt}(I)(1 + \ln \Delta)$$



bipartis COLORATION PONDÉRÉE dans des graphes

- ordonner les sommets de $B=(U,D,E,\vec{w})$ en ordre décroissant des poids;
- fixer un $\epsilon > 0$; $\eta := [1/\epsilon]$; $S_U := \{v_{4\eta+3}, \dots, v_n\} \cap U$; $S_D := \{v_{4\eta+3}, \dots, v_n\} \cap D;$
- calculer la meilleure coloration $\tilde{\mathcal{S}}$ du graphe induit par les sommets $v_1, \ldots, v_{4\eta+2};$
- retourner $\hat{S} := S_U \cup S_D \cup \tilde{S}$

bipartis appartient à DPTAS Le problème de COLORATION PONDÉRÉE dans des graphes

$$S^* = (S_1^*, S_2^*, \dots, S_p^*)$$
: une solution optimale $w_{i_1}, w_{i_2}, \dots, w_{i_p}$: les poids de ses stables $(w_1 = w_{i_1} \geqslant w_{i_2} \geqslant \dots \geqslant w_{i_p})$ $B' = B[\{v_1, \dots, v_{4\eta+2}\}]$

$$\omega(B) = \sum_{v_i \in U \cup D} w(v_i)$$

$$\operatorname{opt}(B) = w_{i_1} + w_{i_2} + \dots + w_{i_p}$$

$$\omega(B') \leq \omega(B)$$

 $|\tilde{S}| \leqslant 2\eta + 2$ deux sont dans L ou R; en les réunissant on diminue la valeur); (sinon il existe au moins trois couleurs-singletons dont au moins

 $m(B', \tilde{S}) = \text{opt}(B') \leqslant \text{opt}(B)$ $(S_1^* \cap V(B'), S_2^* \cap V(B'), \dots, S_p^* \cap V(B')$ est réalisable pour B')

$$\omega(B') - \text{opt}(B') = \sum_{i=1}^{4\eta+2} w_i - \sum_{j=1}^{|S|} w_{i_j}
\geqslant (4\eta + 2 - (2\eta + 2)) w_{4\eta+2}
= 2\eta w_{4\eta+2} \geqslant \frac{2}{\epsilon} w_{4\eta+2}
w(S_U) \leqslant w_{4\eta+2}
w(S_D) \leqslant w_{4\eta+2}$$

$$m\left(B,\hat{S}\right) = w\left(S_{U}\right) + w\left(S_{D}\right) + \operatorname{opt}\left(B'\right)$$

$$= (1 - \epsilon)\operatorname{opt}\left(B'\right)$$

$$+ \epsilon \left(\operatorname{opt}\left(B'\right) + \frac{1}{\epsilon}w\left(S_{U}\right) + \frac{1}{\epsilon}w\left(S_{D}\right)\right)$$

$$\leqslant (1 - \epsilon)\operatorname{opt}\left(B'\right) + \epsilon \left(\operatorname{opt}\left(B'\right) + \frac{2}{\epsilon}w_{4\eta+2}\right)$$

$$\leqslant (1 - \epsilon)\operatorname{opt}(B) + \epsilon \omega(B)$$

SAC-À-DOS

$$I = \begin{cases} \max & \sum_{i=1}^{n} a_i x_i \\ & \sum_{i=1}^{n} c_i x_i \leq b \end{cases}$$

- 1. construire $I' = ((a'_i, c_i)_{i=1,...,n}, b)$ avec $a_i' = \lfloor a_i n / (a_{\max} \epsilon) \rfloor$;
- 2. retourner comme solution pour I, la solution S calculée par la programmation dynamique sur l'instance I'

 $SAC-A-DOS \in \mathbf{FPTAS}$

elle est réalisable pour I'Complexité de la programmation dynamique : $O(n^2 a_{\text{max}} \log c_{\text{max}})$ S^* : une solution optimale pour $I = ((a_i, c_i)_{i=1,...,n}, b)$ Complexité de l'étape $2: O(n^2 a'_{\max} \log c_{\max}) = O((n^3 \log c_{\max})/\epsilon)$

$$t = a_{\max} \epsilon / n$$
$$a'i = \lfloor a_i / t \rfloor$$

$$\operatorname{opt}(I') \geqslant \sum_{i \in S^*} a'_i \geqslant \sum_{i \in S^*} \left(\frac{x_i}{t} - 1\right)$$

$$\geqslant \frac{\operatorname{opt}(I)}{t} - |S^*| \geqslant \frac{\operatorname{opt}(I)}{t} - n \qquad (8)$$

$$t \operatorname{opt}(I') \geqslant \operatorname{opt}(I) - nt \qquad (9)$$

réalisable : opt $(I) = \sum_{i \in S^*} a_i \ge a_{\max}$ La solution qui consiste à prendre seulement l'objet i_0 de valeur $a_{
m max}$ est

 $nt = a_{\max} \epsilon \leqslant \epsilon \operatorname{opt}(I)$

Par (9) et (10):

$$m(I,S) = \sum_{i \in S} a_i \geqslant t \sum_{i \in S} a'_i = t \operatorname{opt}(I')$$

 $\geqslant \operatorname{opt}(I) - nt \geqslant (1 - \epsilon) \operatorname{opt}(I)$

Réductions et approximabilité

Comment:

- Comparer les problèmes entre eux ?
- Comparer les différentes versions d'un même problème (p.ex., pondérée - non pondérée)?
- Relier les différents types d'approximation pour un même (p.ex., classique - différentielle)? problème
- Appréhender le rôle des paramètres par rapport auxquels instance) ? (p.ex., rapports fonctions des divers paramètres d'une nous analysons un rapport d'approximation

- Transférer des résultats d'un problème à l'autre?
- Affiner, si possible, la structure de chaque classe des classes d'approximabilité)? (p.ex., existence des problèmes très difficiles (complets) pour d'approximabilité

|--|

Tutorial sur l'Approximation polynomiale, JFRO 27/6/03

Les exemples les plus classiques :

- MAX STABLE MAX CLIQUE
- COLORATION MIN PARTITION EN CLIQUES

est la spécification de trois fonctions f, g, c: Une réduction de Π à Π' ($\Pi \leq \Pi'$) préservant l'approximation

- f transforme I en I' = f(I);
- g transforme S' en S = g(I, S');
- c transforme r'(I, S') en r(I, S) = c(r'(I, S'))

l'approximation Propriété de base d'une réduction préservant

- si II' est approximable à rapport r', alors II est approximable à rapport r = c(r');
- si II (sous une hypothèse de complexité) n'est pas approximable à rapport r, alors (pour peut que c soit rapport $c^{-1}(r)$ inversible) II n'est pas non plus approximable à

MAX STABLE MAX SOUS-GRAPHE BIPARTI

 $G(V,E) \longrightarrow G'(V',E')$: deux copies de G reliées de façon

bipartie complète

$$\operatorname{opt}(G) = \operatorname{opt}(G')/2$$

$$m(S',G')\leqslant 2m(S,G)$$

 $r'(G', S') \leqslant r(G, S)$

$$c: r' \mapsto r = r'$$

$$r'(G',S')$$
 constant \longrightarrow $r(G,S)$ constant $r'(G',S')=r'(|G'|)$ \longrightarrow $r(G,S)=r(|G'|)$ $=r(G,S)=r(|G'|)$ $r'(G',S')=r'(\Delta(G'))$ \longrightarrow $r(G,S)=r(\Delta(G)+n)$

que $O(n^{\epsilon-1}), \forall \epsilon > 0$ MAX SOUS-GRAPHE BIPARTI n'est pas approximable à mieux pas toute forme de rapport d'approximation! La plupart des réductions telles qu'elles sont définies ne préservent Les réductions ne sont pas universelles!

MAX STABLE PONDÉRÉ < MAX STABLE

 $G \longrightarrow G''$:

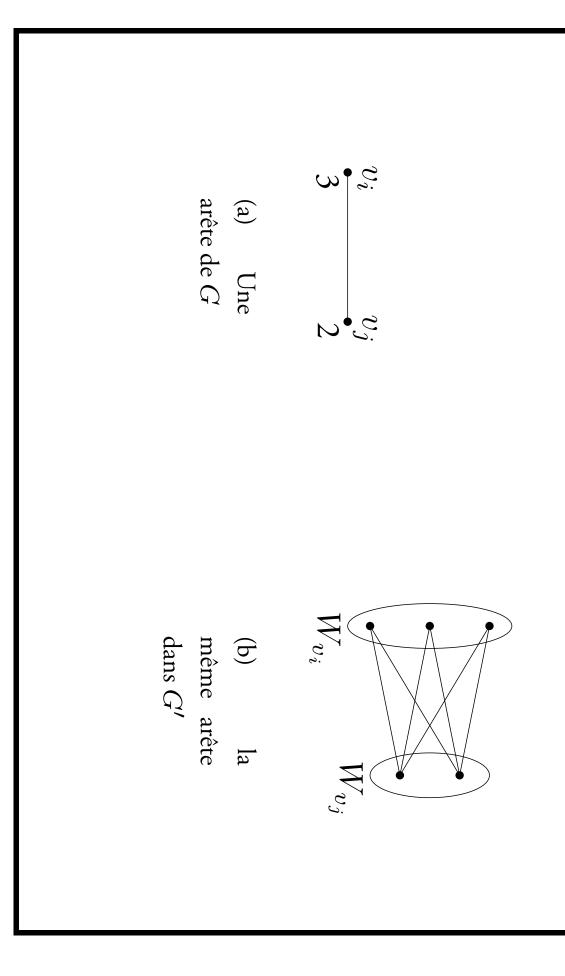
sommets; Un sommet v pondéré par w_v devient un stable W_v sur w_v

Une arête (u, v) devient un graphe biparti complet K_{w_u, w_v} ;

groupes W entier : $S' = W_{v_{i_1}} \cup \ldots \cup W_{v_{i_k}}$; Toute solution S' dans G' correspond à une reunion des

 $S = \{v_{i_1}, \dots, v_{i_k}\}$ un stable dans G;

$$m(G', S') = |S'| = \sum_{j \in \{1, \dots, k\}} w_{v_{i_j}} = m(G, S)$$



Cette réduction préserve APX mais ni Poly-APX, ni \(\Delta\text{-APX}\)

n' peut être en $O(nw_{\max})$ et Δ' en $O(\Delta w_{\max})$

MAX STABLE et MAX CLIQUE

APX et Poly-APX mais pas Δ -APX La réduction classique : stable dans G – clique dans G préserve

$$\forall v \in V, G_v = G[\{v\} \cup \Gamma(v)]$$
$$|G_v| = |\bar{G}_v| \leq \Delta(G) + 1$$
$$\Delta(\bar{G}_v) \leq \Delta(G)$$

Un des G_v contient une clique de G de taille maximum

sur $G_v \iff$ rapport $r(|G_v|) = r(|G_v|) \ge r(\Delta(G) + 1)$ pour MAX CLIQUE dans GAlors : rapport $r(|G_v|) \geqslant r(\Delta(G) + 1)$ pour MAX STABLE

La réduction préserve Δ -APX

MAX CLIQUE est approximable à rapport $O(\log^2 \Delta(G)/\Delta(G))$

Gap technique

 \mathbf{NP} -complet, et Π' , un problème de \mathbf{NPO} , telle que : on conçoit une réduction entre II, un problème de décision L'idée de base (pour un problème Π' de minimisation) :

 $\exists c, r \text{ tels que}$

- si $I \in \mathcal{O}_{\Pi}$ alors $\operatorname{opt}(I') \leqslant c$;
- $I \in \mathcal{I}_{\Pi} \setminus \mathcal{O}_{\Pi}$, alors $\operatorname{opt}(I') > rc$

Alors Π' n'est pas approximable à rapport r

à mieux que $c^{-1}(r)$ l'approximabilité entre Π' et Π'' , alors Π'' n'est pas approximable Puis si on conçoit une réduction (f,g,c) préservant

Si Π' approximable à rapport r, alors :

•
$$\forall I \in \mathcal{O}_{\Pi}, m(f(I), S') \leqslant rc;$$

•
$$\forall I \in \mathcal{I}_{\Pi} \setminus \mathcal{O}_{\Pi}, m(f(I), S') \ge \text{opt}(f(I)) > rc$$

MIN TSP

Si $P \neq NP$, alors il n'y a pas d'algorithme polynomial pour min meilleur que $d_{\rm max}/(nd_{\rm min})$ TSP garantissant rapport d'approximation (classique) strictement

Le rapport d_{\max}/d_{\min} est garanti par tout algorithme polynomial

CYCLE HAMILTONIEN se réduit polynomialement à MIN TSP $G \longrightarrow K_n$; pour $e \in E(K_n)$,

$$d(e) = \begin{cases} 1 & \text{si } e \in E(G) \\ \frac{d_{\text{max}}}{d_{\text{min}}} & \text{si } e \notin E(G) \end{cases}$$

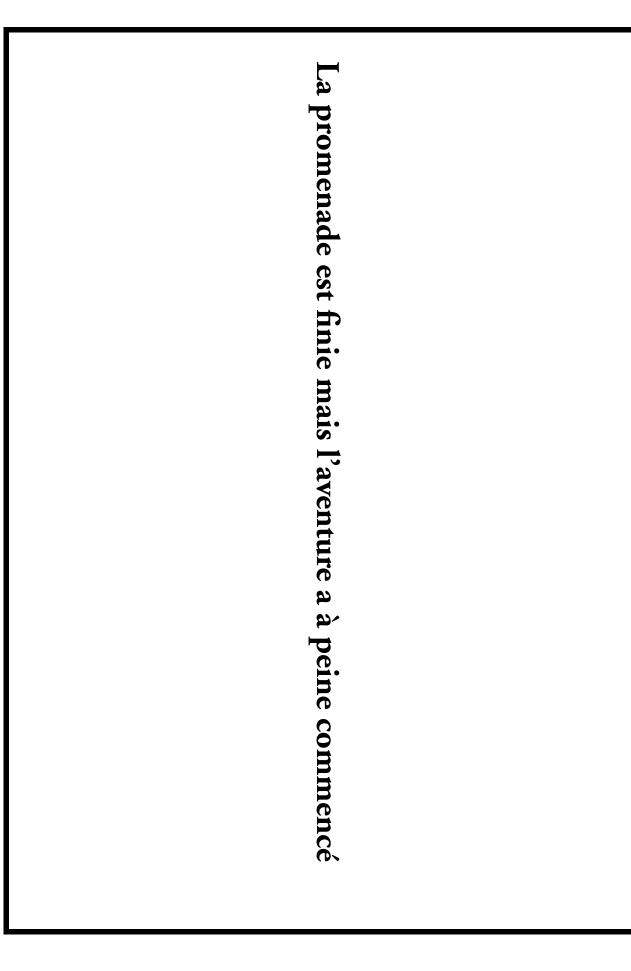
G hamiltonien:

$$opt(K_n) = n$$

$$m(K_n, T) < n \frac{d_{\max}}{n d_{\min}} = \frac{d_{\max}}{d_{\min}}$$

G non-hamiltonien:

$$\begin{array}{ll}
\operatorname{opt}(K_n) & \geqslant & \frac{d_{\max}}{d_{\min}} \\
m(K_n, T) & \geqslant & \operatorname{opt}(K_n) & \geqslant & \frac{d_{\max}}{d_{\min}}
\end{array}$$



- Plus de résultats d'approximation, structurels ou opérationnels;
- Approximation, en temps prédéfini, des problèmes polynomiaux;
- Approximation et algorithmique on-line