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Planar graphs are 4-colorable.

\.

,_(The Four color theorem)

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).

\.

,_(The Four color theorem)

Every 2-edge-connected cubic planar graph has a nowhere-zero 4-flow.

.
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FLOWS IN GRAPHS

A k-flow in an oriented graph G is an assignment of integers of £{0,1,..., k — 1}
to the arcs of G, such that for each vertex v, the sum of the values of the arcs
entering v is equal to the sum of the values of the arcs leaving v.

We say that the flow is nowhere-zero if every arc has a non-zero value.

= Orientations are irrelevant in this problem.

For plane graphs, flows are in duality with proper vertex colorings: G has a
k-coloring if and only if its dual G* has a nowhere-zero k-flow.
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Any graph with a nowhere-zero k-flow is 2-edge connected.

F(Conjecture (Tutte 1954)]

Any 2-edge-connected graph has a nowhere-zero 5-flow.
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f_(Theorem (Seymour 1981))

Any 2-edge-connected graph has a nowhere-zero 6-flow.

. J

It is not even known whether 2-edge-connected graphs have a real flow with flow
values in [1, ¢], for some absolute ¢ < 5.

Problem (DeVos McDonald Pivotto Rollovd Sdmal 2017). Find flows with large
support.

For instance: any 2-edge-connected graph has a 4-flow with at most 1—15 of its
edges with flow value zero.
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’_(Theorem (Grotzsch 1959))

Every triangle-free planar graph is 3-colorable.

.

’_(Theorem (Grétzsch 1959))

Every 4-edge-connected planar graph has a nowhere-zero 3-flow.

.

'_[Conjecture (Tutte 1966))

Every 4-edge-connected graph has a nowhere-zero 3-flow.

\.

f_(Theorem (Lovasz, Thomassen, Wu, Zhang 2013))

Every 6-edge-connected graph has a nowhere-zero 3-flow.

.
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CUBIC GRAPHS AND PERFECT MATCHINGS

Every cubic 2-edge-connected graph contains a perfect matching.

[lTheorem (Petersen 1891))
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The perfect matching polytope of G is the convex hull of the characteristic
vectors of the perfect matchings of G.

Theorem (Edmonds 1965))

A vector w € RE is in the perfect matching polytope if and only if (i) for each
edge e, w. > 0, (ii) for each vertex v, > . we = 1, and (iii) for each odd
edge-cut C, > we > 1.
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For any cubic 2-edge-connected graph G, the vector £ = (3,...,3) is in the
perfect matching polytope of G.

Conjecture (Berge, Fulkerson 1971))

For any cubic 2-edge-connected graph G, the vector % can be expressed as a

convex combination of at most 6 perfect matchings of G.
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Berge-Fulkerson conjecture would imply

’_[Conjecture (Berge))

The edge-set of every cubic 2-edge-connected graph can be covered by at most
5 perfect matchings.

. J

f_(Theorem (Mazzuoccolo 2012))

Berge-Fulkerson conjecture and Berge conjecture are equivalent.

. J

It is not known whether there exists some constant ¢ such that the edge-set of
every cubic 2-edge-connected graph can be covered by at most ¢ perfect
matchings.

To achieve log n : Draw random perfect matchings from the %-distribution until
all edges are covered.
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COVERING THE EDGE-SET WITH PERFECT MATCHINGS

What is the maximum fraction of edges of a cubic 2-edge-connected graph G that
can be covered using t perfect matchings of G?7

) Us, M
My,...M.  |E(G)|

. my(P)=2; my(P) = %; my(P) = %; ms(P) =1,
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my = ir&f m(G)

’_(Theorem (Kaiser, Kral', Norine 2006))

my = mg(P) = g

\_ J

’_(Conjecture (Patel 2006))

2 and my = my(P) = 13

\ J

m3 = m3(P) =

’_(Theorem (Patel 2006))

14
15

\_ J

Berge-Fulkerson Conjecture implies m3 = % and my =
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’_[Theorem (Esperet Mazzuoccolo 2013))

Deciding whether m4(G) = 1 for a cubic 2-edge-connected graph G is an
NP-complete problem.
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F(Double Cycle Cover Conjecture (Szekeres 1973, Seymour 1980)|

Every 2-edge-connected graph contains a collection of cycles covering each edge
precisely twice.

\.

Theorem (Steffen - Tang, Zhang, Zhu 2012))

Any cubic 2-edge-connected graph G with ms(G) = 1 has a collection of cycles
covering each edge precisely twice.
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Conjecture (Fan, Raspaud 1994))

Every cubic 2-edge-connected graph contains contains 3 perfect matchings with
empty intersection.

Theorem (Esperet, Mazzuoccolo 2013))

ms3 = % would imply Fan-Raspaud Conjecture

Solves a conjecture of W. Tang, C.Q. Zhang, and Q. Zhu

. B . . _ 4
Question: Does Fan-Raspaud Conjecture imply m3 = 7
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MORE OPEN PROBLEMS

@ Is it NP-complete to decide whether m,(G) = % for a cubic 2-edge-connected
graph G?

@ Is there a constant ¢ such that any cubic 2-edge-connected graph can be
covered by at most ¢ perfect matchings?

@ Is there a constant ¢ such that any cubic 2-edge-connected graph has at
most ¢ perfect matchings with empty intersection.
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