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Colorings, flows, and perfect matchings
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A k-coloring of a graph G = (V ,E ) is a function c : V → {1, . . . , k} such that for
any pair u, v of adjacent vertices in G , c(u) 6= c(v).

A nowhere-zero k-flow in an oriented graph G is an assignment of integers from
±{1, . . . , k − 1} to the arcs of G , such that for each vertex v , the sum of the
values of the arcs entering v is equal to the sum of the values of the arcs leaving v .

A perfect matching in a graph G is a set of edges that covers each vertex of G
exactly once.

Planar graphs are 4-colorable.

The Four color theorem
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Duality

Planar graphs are 4-colorable.

The Four color theorem

The edges of every 2-edge-connected cubic planar graph can be colored with 3
colors (i.e. partitioned into 3 perfect matchings).

The Four color theorem

Every 2-edge-connected cubic planar graph has a nowhere-zero 4-flow.
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Flows in graphs

A k-flow in an oriented graph G is an assignment of integers of ±{0, 1, . . . , k − 1}
to the arcs of G , such that for each vertex v , the sum of the values of the arcs
entering v is equal to the sum of the values of the arcs leaving v .

We say that the flow is nowhere-zero if every arc has a non-zero value.

⇒ Orientations are irrelevant in this problem.

For plane graphs, flows are in duality with proper vertex colorings: G has a
k-coloring if and only if its dual G∗ has a nowhere-zero k-flow.
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5-Flows in graphs

Any graph with a nowhere-zero k-flow is 2-edge connected.

Any 2-edge-connected graph has a nowhere-zero 5-flow.

Conjecture (Tutte 1954)

Any 2-edge-connected graph has a nowhere-zero 6-flow.

Theorem (Seymour 1981)

It is not even known whether 2-edge-connected graphs have a real flow with flow
values in [1, c], for some absolute c < 5.

Problem (DeVos McDonald Pivotto Rollová Šámal 2017). Find flows with large
support.

For instance: any 2-edge-connected graph has a 4-flow with at most 1
15 of its

edges with flow value zero.
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support.

For instance: any 2-edge-connected graph has a 4-flow with at most 1
15 of its

edges with flow value zero.



5-Flows in graphs

Any graph with a nowhere-zero k-flow is 2-edge connected.

Any 2-edge-connected graph has a nowhere-zero 5-flow.

Conjecture (Tutte 1954)

Any 2-edge-connected graph has a nowhere-zero 6-flow.

Theorem (Seymour 1981)

It is not even known whether 2-edge-connected graphs have a real flow with flow
values in [1, c], for some absolute c < 5.

Problem (DeVos McDonald Pivotto Rollová Šámal 2017). Find flows with large
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support.

For instance: any 2-edge-connected graph has a 4-flow with at most 1
15 of its

edges with flow value zero.



5-Flows in graphs

Any graph with a nowhere-zero k-flow is 2-edge connected.

Any 2-edge-connected graph has a nowhere-zero 5-flow.

Conjecture (Tutte 1954)

Any 2-edge-connected graph has a nowhere-zero 6-flow.

Theorem (Seymour 1981)

It is not even known whether 2-edge-connected graphs have a real flow with flow
values in [1, c], for some absolute c < 5.

Problem (DeVos McDonald Pivotto Rollová Šámal 2017). Find flows with large
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Every triangle-free planar graph is 3-colorable.

Theorem (Grötzsch 1959)
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Theorem (Grötzsch 1959)

Every 4-edge-connected graph has a nowhere-zero 3-flow.

Conjecture (Tutte 1966)

Every 6-edge-connected graph has a nowhere-zero 3-flow.

Theorem (Lovász, Thomassen, Wu, Zhang 2013)



3-Flows in graphs

Every triangle-free planar graph is 3-colorable.

Theorem (Grötzsch 1959)
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Cubic graphs and perfect matchings

Every cubic 2-edge-connected graph contains a perfect matching.

Theorem (Petersen 1891)



The perfect matching polytope

The perfect matching polytope of G is the convex hull of the characteristic
vectors of the perfect matchings of G .

A vector w ∈ RE is in the perfect matching polytope if and only if (i) for each
edge e, we ≥ 0, (ii) for each vertex v ,

∑
e3v we = 1, and (iii) for each odd

edge-cut C ,
∑

e∈C we ≥ 1.

Theorem (Edmonds 1965)

For any cubic 2-edge-connected graph G , the vector 1
3 = ( 1

3 , . . . ,
1
3 ) is in the

perfect matching polytope of G .

For any cubic 2-edge-connected graph G , the vector 1
3 can be expressed as a

convex combination of at most 6 perfect matchings of G .

Conjecture (Berge, Fulkerson 1971)
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Equivalently:

Every cubic 2-edge-connected graph contains six perfect matchings (with rep-
etitions allowed) covering each edge precisely twice.
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Covering the edge-set with perfect matchings

Berge-Fulkerson conjecture would imply

The edge-set of every cubic 2-edge-connected graph can be covered by at most
5 perfect matchings.

Conjecture (Berge)

Berge-Fulkerson conjecture and Berge conjecture are equivalent.

Theorem (Mazzuoccolo 2012)

It is not known whether there exists some constant c such that the edge-set of
every cubic 2-edge-connected graph can be covered by at most c perfect
matchings.

To achieve log n : Draw random perfect matchings from the 1
3 -distribution until

all edges are covered.
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What is the maximum fraction of edges of a cubic 2-edge-connected graph G that
can be covered using t perfect matchings of G?
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i=1 Mi |
|E (G )|
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Graphs G with m4(G ) = 1

Deciding whether m4(G ) = 1 for a cubic 2-edge-connected graph G is an
NP-complete problem.

Theorem (Esperet Mazzuoccolo 2013)

Every 2-edge-connected graph contains a collection of cycles covering each edge
precisely twice.

Double Cycle Cover Conjecture (Szekeres 1973, Seymour 1980)

Any cubic 2-edge-connected graph G with m4(G ) = 1 has a collection of cycles
covering each edge precisely twice.

Theorem (Steffen - Tang, Zhang, Zhu 2012)
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Fan-Raspaud Conjecture and m3 = 4/5

Every cubic 2-edge-connected graph contains contains 3 perfect matchings with
empty intersection.

Conjecture (Fan, Raspaud 1994)

m3 = 4
5 would imply Fan-Raspaud Conjecture

Theorem (Esperet, Mazzuoccolo 2013)

Solves a conjecture of W. Tang, C.Q. Zhang, and Q. Zhu

Question: Does Fan-Raspaud Conjecture imply m3 = 4
5?



Fan-Raspaud Conjecture and m3 = 4/5

Every cubic 2-edge-connected graph contains contains 3 perfect matchings with
empty intersection.

Conjecture (Fan, Raspaud 1994)

m3 = 4
5 would imply Fan-Raspaud Conjecture

Theorem (Esperet, Mazzuoccolo 2013)

Solves a conjecture of W. Tang, C.Q. Zhang, and Q. Zhu

Question: Does Fan-Raspaud Conjecture imply m3 = 4
5?



Fan-Raspaud Conjecture and m3 = 4/5

Every cubic 2-edge-connected graph contains contains 3 perfect matchings with
empty intersection.

Conjecture (Fan, Raspaud 1994)

m3 = 4
5 would imply Fan-Raspaud Conjecture

Theorem (Esperet, Mazzuoccolo 2013)

Solves a conjecture of W. Tang, C.Q. Zhang, and Q. Zhu

Question: Does Fan-Raspaud Conjecture imply m3 = 4
5?



Fan-Raspaud Conjecture and m3 = 4/5

Every cubic 2-edge-connected graph contains contains 3 perfect matchings with
empty intersection.

Conjecture (Fan, Raspaud 1994)

m3 = 4
5 would imply Fan-Raspaud Conjecture

Theorem (Esperet, Mazzuoccolo 2013)

Solves a conjecture of W. Tang, C.Q. Zhang, and Q. Zhu

Question: Does Fan-Raspaud Conjecture imply m3 = 4
5?



More open problems

1 Is it NP-complete to decide whether m2(G ) = 3
5 for a cubic 2-edge-connected

graph G?

2 Is there a constant c such that any cubic 2-edge-connected graph can be
covered by at most c perfect matchings?

3 Is there a constant c such that any cubic 2-edge-connected graph has at
most c perfect matchings with empty intersection.
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